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Purpose: To develop an effective method that can suppress noise in successive multiecho T2(*)-weighted magnetic reso-
nance (MR) brain images while preventing filtering artifacts.
Materials and Methods: For the simulation experiments, we used multiple T2-weighted images of an anatomical brain
phantom. For in vivo experiments, successive multiecho MR brain images were acquired from five healthy subjects using
a multiecho gradient-recalled-echo (MGRE) sequence with a 3T MRI system. Our denoising method is a nonlinear filter
whose filtering weights are determined by tissue characteristics among pixels. The similarity of the tissue characteristics
is measured based on the l2-difference between two temporal decay signals. Both numerical and subjective evaluations
were performed in order to compare the effectiveness of our denoising method with those of conventional filters,
including Gaussian low-pass filter (LPF), anisotropic diffusion filter (ADF), and bilateral filter. Root-mean-square error
(RMSE), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were used in the numerical evaluation. Five
observers, including one radiologist, assessed the image quality and rated subjective scores in the subjective evaluation.
Results: Our denoising method significantly improves RMSE, SNR, and CNR of numerical phantom images, and CNR of
in vivo brain images in comparison with conventional filters (P < 0.005). It also receives the highest scores for structure
conspicuity (8.2 to 9.4 out of 10) and naturalness (9.2 to 9.8 out of 10) among the conventional filters in the subjective
evaluation.
Conclusion: This study demonstrates that high-SNR multiple T2(*)-contrast MR images can be obtained using our
denoising method based on tissue characteristics without noticeable artifacts.
Level of Evidence: 2
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Magnetic resonance imaging (MRI) is one of the most

powerful medical imaging techniques, and it offers

high flexibility and multiple imaging with high soft-tissue con-

trast. Recently, many neuroimaging researchers have used mul-

tiple MR brain image sets to analyze fundamental tissue

properties. Among these, multiecho T2(*)-contrast MRI has

revealed various tissue properties of the brain, such as myelin

content,1–3 cellular iron uptake,4,5 susceptibility,6–8 nerve fiber

structure,9–12 and sources of activation in functional MRI.13,14

Unfortunately, these new protocols that acquire multi-

ple images during a restricted scan time have a major

limitation: the signal-to-noise ratio (SNR) in each image is

lower than in conventional single-echo imaging techniques

with low readout bandwidth. Thus, despite the increasing

demand for multicontrast MRI, such as multiecho T2(*)-

weighted imaging, an adequate denoising method has yet to

be developed (to the best of our knowledge); instead, the

noise is removed by conventional filters.

At present, the low SNR problem in MRI is resolved

by frequency-selective low-pass filters (LPFs),15 anisotropic

diffusion filters (ADFs),16–18 bilateral filters,19 and other

conventional filters. Although these filters improve SNR,
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most introduce spatial artifacts in the filtered images that

impede analysis or diagnosis. LPF introduces blurring arti-

facts that smoothen the details and boundaries of tissues

and induce a partial volume effect.15 More sophisticated

nonlinear filters, such as ADF and bilateral filters, preserve

the details and edges of images better than the linear filters

while effectively suppressing noise.20 However, nonlinear

processing (eg, diffusion-based smoothing) produces artifi-

cial appearances or staircasing artifacts.21 For these reasons,

conventional filters are not widely accepted in many clinical

settings.

In conventional filtering methods, the filtering weights

are determined by the intensity values of the pixel of interest

and its neighbors, which introduces spatial artifacts. More-

over, the single intensity value at the pixel of interest yields

no information of the underlying tissue characteristics nor

does it distinguish the pixel from its neighbors. Therefore,

whether the intensities of some pixels should be averaged or

excluded is not easily determined. Noise in the images fur-

ther complicates the differentiation.

In this study we propose a robust denoising method

for multiecho MR images, where the filtering weights are

determined depending on the underlying tissue characteris-

tics, not on a single intensity value. This method can effi-

ciently reduce noise while minimizing unwanted spatial

artifacts.

Materials and Methods

This study was approved by our Institutional Review Board. Writ-

ten informed consent was obtained from all human subjects.

Data Acquisition
For in vivo brain imaging, five healthy volunteers (five males, aged

24 6 1 years) were scanned with a multiecho gradient-recalled-echo

(MGRE) sequence using a 3T Siemens MRI system (Siemens

Medical Solutions, Erlangen, Germany). The parameters for the

MGRE sequence were: first echo time (TE1) 5 5.67 msec, echo

spacing (ES) 5 5.51 msec, repetition time (TR) 5 95 msec, flip

angle 5 278, slice thickness 5 1.6 mm, bandwidth 5 444 Hz/Px,

field of view 5 215 3 215 mm2, number of echoes 5 16, number

of slices 5 32, matrix size 5 1024 3 1024 3 16 (interpolated

from the acquired data with matrix size 512 3 512 3 16), and

in-plane resolution 5 0.21 3 0.21 mm2. To reduce the scan time,

a generalized autocalibrating partially parallel acquisition22 was

applied to the MGRE sequence with an acceleration factor of 2.

The total acquisition time was 15 minutes 30 seconds. To

demonstrate the effectiveness of the proposed denoising method,

the resulting 16 image sets with different T �2 weightings were

denoised by the proposed method and several conventional filters.

All steps of the image processing, including filtering and region of

interest (ROI) measurement, were performed using MatLab (Math-

Works, Natick, MA).

Simulation of Synthetic Data
For quantitative evaluation, we acquired multiple T2-weighted

images of an anatomical brain phantom with multiple sclerosis

(MS) lesions from BrainWeb.23–25 For simplicity, a temporal decay

signal of each pixel was generated by a monoexponential model,

assuming that each voxel comprises a single compartment.26 The

brain phantom was comprised of eight types of tissues. Table 1 lists

the M0 and T2 values (referred from BrainWeb) used to generate

the monoexponential decay signals.

The multiple T2-weighted images were generated under the

following imaging parameters: infinite TR (full recovery), TE1 5 5

msec, ES 5 5 msec, number of echoes 5 20, and matrix size 5 181

3 217 3 20. The temporal decay signal of each pixel was calculat-

ed as follows:

I ð~x ;TEiÞ5M0ð~xÞ3e2
TEi

T2 ~xð Þ;TEi55; 10; 15; . . . ; 95; 100 ms

(1)

where ~x is a pixel position; TEi is the i-th TE; M0ð~xÞ and T2ð~xÞ
are the M0 and T2 values of a tissue at~x , respectively; and Ið~x ;T ;
EiÞ is the intensity of ~x at TEi. The simulation data were superim-

posed with white Gaussian noise with a standard deviation of 9%

of the pixel intensity of the brightest tissue cerebrospinal fluid

(CSF) at the first echo time. The left, center, and right panels of

Fig. 1 show T2-weighted images at TE 5 10, 50, and 100 msec,

respectively. Because each tissue has a different T2 decay rate, all

T2-weighted images show various contrasts.

Neighborhood Filtering
A neighborhood filter is any filter that restores a pixel by taking

the weighted combination of the intensities of largely “similar” pix-

els.27 Typically, similarities among pixels depend on the spatial

information, intensity information,19,28 and patch or vector infor-

mation27 in an image.

An early example of a neighborhood filter is the Yaroslavsky

filter,28 which weighs the intensity similarities of the pixels close to

the reference pixel while assigning zero weights to more distant

pixels. The intensity similarity is defined as a Gaussian function:

TABLE 1. M0 and T2 Values Used to Generate Multiecho Images From a Brain Phantom

CSF Gray matter White matter Fat Muscle /skin Skin Glial matter MS lesion

M0 (msec) 1.0 0.86 0.77 1.0 1.0 1.0 0.86 0.76

T2 (msec) 329 93 70 70 47 329 93 137
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sI ð~x ; xr
�! Þ5e

21
2
jIð~x Þ2Ið xr

�!Þj
rI

� �2

; (2)

where xr
�!

and ~x are the positions of the reference pixel and another

pixel in the image, respectively. Ið~xÞ and I ðxr
�!Þ denote the intensi-

ties at ~x and xr
�!

, respectively. rI is a filtering parameter (the stan-

dard deviation of the Gaussian function), and SI ð~x ; xr
�!Þ is the

intensity similarity between ~x and xr
�!

. When filtering xr
�!

by the

Yaroslavsky filter, ~x is weighted as follows:

wyarð~x ; xr
�!Þ5

sI ð~x ; xr
�!Þ if j~x 2!xr j � R

0 if j~x 2xr
�!j > R0

8<
: (3)

where j~x2xr
�!j is the spatial distance between ~x and xr

�!
, and R is a

spatial distance threshold that identifies the spatially neighboring

pixels.

A more recent neighborhood filter is the bilateral filter,19 which

evaluates both spatial and intensity similarities. Similar to the intensi-

ty similarity, the spatial similarity is denoted by a Gaussian function:

ssð~x ; xr
�!Þ5e

21
2
j~x 2 xr
�!j

rs

� �2

; (4)

where rS is the standard deviation of the Gaussian function. In the

bilateral filtering of xr
�!

, ~x is weighted by:

wbið~x ; xr
�!Þ5ssð~x ; xr

�!ÞsI ð~x ; xr
�!Þ (5)

Finally, the pixel intensity denoised by the neighborhood filters is

expressed as a weighted combination of the intensities of pixels in

the image, denoted by X:

INH ðxr
�!Þ5

X
~x2Xw

NH ð~x ; xr
�! ÞI ~xð ÞX

~x2Xw
NH ð~x ; xr

�!Þ
(6)

where wNH ð~x ; xr
�!Þ is the weighting value of a generalized neighbor-

hood filter. In the Yaroslavsky and bilateral filters, this parameter is

denoted as wyarð~x ; xr
�!Þ and wbið~x ; xr

�!Þ, respectively.

Denoising Method Based on Tissue Characteristics
The proposed denoising method borrows the concept of conven-

tional neighborhood filters; that is, it restores a pixel by taking the

weighted combination of pixels with large similarities. However,

because the filtering weights are determined from the spatial infor-

mation and/or intensities of the pixels while disregarding their

underlying tissue characteristics, these filters introduce spatial arti-

facts, such as blurring, flattening, and mottling. To prevent these

spatial artifacts while reducing noise and retaining the underlying

tissue properties, we propose filtering weights based on similar tis-

sue characteristics among the pixels. The tissue characteristics of a

pixel manifest as different decay patterns in the temporal decay sig-

nals of successive multiecho T2(*) MR images.29 The temporal

decay signal from each pixel exhibits tissue-dependent characteris-

tics, such as proton density, T1, and the T2 or T �2 decay rate.

Therefore, whether two pixels have similar tissue characteristics can

be determined by checking the similarity between their temporal

signal patterns. Furthermore, weighting the proposed denoising

method excludes spatial similarity because pixels with similar tissue

characteristics can exist at any position in the image. In fact, pixels

distant from the reference pixel can be weighted more heavily in

the proposed denoising method, thus greatly enhancing SNR. In

order to identify the similarity of the tissue characteristics between

two pixels, we compute the intertissue distance between the pixels:

Dð~x ; xr
�!Þ¢

XN

i51
jI ð~x ;TEiÞ2I ðxr

�!
;TEiÞj2 (7)

where TEi is the i-th TE and N is the total number of TEs. I ð~x ;T
EiÞ and I ðxr

�!
;TEiÞ denote the intensities of pixel ~x at TEi and pixel

FIGURE 1: Multiple T2-weighted images for numerical brain phantom in noiseless simulation studies with: (a) TE 5 10 msec, (b) 50
msec, (c) 100 msec.

FIGURE 2: CNR values of three different tissues (GM, lesion,
and CSF) for simulation data. Threshold value is th 5 arb, where
rb is the standard deviation of background noise.
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xr
�!

at TEi, respectively. Dð~x ; xr
�!Þ is the intertissue distance between

~x and xr
�!

. Furthermore, when filtering pixel xr
�!

pixel~x is weighted as:

wð~x ; xr
�!Þ5

1 if Dð~x ; xr
�!Þ � th

0 if Dð~x ; xr
�!Þ > th

8<
: (8)

where th is the threshold value that determines whether ~x has tissue

characteristics similar to xr
�!

. This parameter determines the degree

of filtering, which depends on the noise or signal level and number

of TEs. The weighting value wð~x ; xr
�!Þ is set to 1 or 0. Alternatively,

wð~x ; xr
�!Þ can be given by a Gaussian function of Dð~x ; xr

�!Þ, as

follows:

wð~x ; xr
�!Þ5stcð~x ; xr

�!Þ5e
21

2
Dð~x ; xr

�!Þ
rtc

� �2

; (9)

where stcð~x ; xr
�!Þ is the tissue-characteristics similarity between ~x and

xr
�!

, and rtc is the standard deviation of the Gaussian function.

Both weighting functions yielded similar denoising performance in

our preliminary studies. Therefore, in real experiments we adopted

the weighting function shown in Eq. [8] for simpler implementa-

tion and faster processing. The normalization factor or number of

pixels with similar tissue characteristics to xr
�!

was obtained as:

nðxr
�!Þ5

X
~x2Xwð~x ; xr

�!Þ; (10)

where X is all image pixels. The denoised pixel intensity of xr
�!

at

TEi was obtained as a weighted combination of the pixel intensities

in the same-TE image:

Id ðxr
�!
;TEiÞ5

X
~x2Xwð~x ; xr

�!ÞI ~x ;TEið Þ
nðxr
�!Þ

5
X

~x2Xw
nð~x ; xr

�!ÞI ð~x ;TEiÞ

(11)

where wnð~x ; xr
�!Þ is the weighting value normalized by nðxr

�!Þ. Finally,

the denoised multiecho images were obtained with the pixel-wise

process of Eq. [11] for all pixels in the images.

Determination of Threshold Value
In order to choose the optimal threshold value th in Eq. [8], we

analyzed the filtering results for different threshold values. Figure 2

FIGURE 3: CNR values of three different tissues (WM, GM, and
vein) with different threshold values for in vivo data.

FIGURE 4: Denoising results of simulation studies: (a) magnified image for original image at TE 5 50 msec, (b) magnified noisy image,
(c) images denoised by LPF, (d) ADF, (e) bilateral filter, (f) proposed denoising method. White arrows in (a) point to eight lesions.

Journal of Magnetic Resonance Imaging

1838 Volume 45, No. 6



shows the CNR values of the simulation data with three different

tissues (gray matter [GM], lesion, and CSF) and threshold values

th 5 arb, where rb is the standard deviation of the background

noise. We calculated mean CNR over all TEs (Fig. 2). CNR for

GM and lesion reached its maxima at approximately a 5 9.5, and

CSF reached its maxima at approximately a 5 8.5. We chose

a 5 9.5 for our simulation experiment.

Figure 3 shows the CNR values of three different tissues

(WM, GM, and vein) with different threshold values at in vivo

data. CNR for WM reached its maxima at approximately a 5 1.0–

1.8. CNR for GM reached its maxima at approximately a 5 1.6–

1.8. CNR for vein reached its maxima at approximately a 5 2.5–

2.8. We focused on improving the soft-tissue contrasts, and there-

fore we chose a of 1.8 for our in vivo experiment.

Comparison With Conventional Spatial Filters
The performance of the proposed denoising method was compared

with those of three conventional filters: Gaussian LPF, ADF, and

bilateral filter. The parameters of each conventional filter were

selected by evaluating the CNR performance in the repetitive

experiments with different parameter values such that each conven-

tional filter could produce its best CNR results. For LPF, the stan-

dard deviation of the Gaussian function and kernel size were set to

0.6 and 7 3 7, respectively, in the simulation experiment and 1.2

and 11 3 11, respectively, in the in vivo experiment. Parameter j
for ADF was set to 0.02 and 0.03 in the simulation and in vivo

experiments, respectively. For both experiments, the iteration num-

ber was set to 8. For the bilateral filter, the kernel size and rS were

set to 20 3 20 and 1.1, respectively, in both experiments, whereas

rI was set to 0.13 and 0.6 in the simulation and in vivo experi-

ments, respectively.

For the quantitative evaluation, the RMSE values were com-

pared in simulation studies and the CNR values were compared in

both simulation and in vivo studies. RMSE between the denoised

and true images was calculated as the l2 difference between the two

images:

RMSE5kItrue2Idk2 (12)

where Itrue and Id denote a set of pixel intensities in the true and

denoised images, respectively. SNR of ROI a was calculated as

follows:

SNRa5
la

ra
(13)

where la and ra are the mean value and standard deviation of the

pixels in ROI a, respectively. CNR between foreground tissue f and

background tissue b was calculated as follows:

CNRf :b5
jlf 2lbj

rb
(14)

where lf and lb are the mean pixel values in the ROIs of f and b,

respectively. rb is the standard deviation of the pixel intensities for

ROI of b.

For the subjective evaluation, five observers, including one

radiologist, performed a blind image quality assessment30 for the

denoised images in terms of structure conspicuity and naturalness.

It was demonstrated that subjective naturalness correlates highly

with image distortions and noise in optics-image assessments.31

Therefore, we used this subjective metric to evaluate artifacts and

noise in our experiments. All scores range from 1 (very bad) to 10

(very good). Mean opinion scores (MOS), commonly used in sub-

jective evaluations, were obtained by taking an average of the scores

rated by all observers.30,31

Results

Simulation Studies
Figure 4 shows the denoising results from the simulation

studies of the true image (Fig. 4a) and noisy image

(Fig. 4b) at TE 5 50 msec extracted from the synthetic

multiecho dataset.

Figure 5 shows the plots of RMSE (Fig. 5a), CNR

between the lesions and background tissues (Fig. 5b), and

SNR at a region of WM (Fig. 5c) for the images shown in

Fig. 4 as functions of TE. The CNR values were averaged

FIGURE 5: Plots for: (a) RMSE, (b) CNR between lesions and
background tissues, (c) SNR at a region of WM.
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over the eight CNR values between the eight lesions and

their background tissues. According to the RMSE graph

(Fig. 5a), the proposed denoising method results in the low-

est RMSE, demonstrating that it substantially reduces noise

and most accurately restores the original image among the

tested methods. The CNR graph (Fig. 5b) shows that the

proposed denoising method preserves the boundaries

between lesions and WM the best. The SNR graph (Fig.

5c) indicates that the proposed denoising method shows the

highest SNRs for all TEs.

Table 2 lists RMSE, CNR, SNR, and subjective MOS

for lesion conspicuity at three different echoes (10, 50, 90

msec). Although the conventional filters improve the three

objective metrics compared with the noisy images, their

lesion conspicuity scores are similar to, or rather less than,

those of the original noisy images. In contrast, our denois-

ing method receives the highest lesion conspicuity scores

and the best performance in those three objective metrics.

Figure 6 shows the effects of ES and echo number of

multiecho images on the denoising performances of the pro-

posed method. RMSE exponentially decreases as the num-

ber of echoes increase from 1 (which represents a single-

contrast image set). Notably, at only two echoes, RMSE is

lower after denoising by the proposed method than by the

conventional spatial filters. At four echoes, RMSE in the

proposed method decreases to 1/4 of the noise RMSE.

Varying ES at 1, 3, and 5 msec exerts scant effect on RMSE

at a given number of echoes. However, longer ES (10 and

20 msec) degrades RMSE because the images acquired at

long TEs, such as 200 msec, contain no meaningful signal

components.

In Vivo Experiments
Figure 7 shows the original noisy image (Fig. 7a), image

denoised with the proposed filter (Fig. 7b), and magnified

image of ROI B shown in Fig. 7b (Fig. 7c). The six regions

for calculating CNR between GM and WM are presented

in Fig. 7a,b. The delineated regions of GM and WM

regions (these ROIs are used in the CNR calculations of all

denoised images) are shown in Fig. 7c. Here, ROIs for GM

(solid line) and WM (dashed line) are spaced closely to

assess the boundary blurring effects caused by the denoising

process.

TABLE 2. Quality Evaluation of Simulation Data. RMSE, CNR, SNR, and MOS for Lesion Conspicuity at Three
Echo Times (10, 50, and 90 msec)

TE (msec) Evaluation metrics Noisy LPF ADF Bilateral Proposed method

10 RMSE 0.0392 0.0365 0.0215 0.0201 0.0083

CNR 2.375 3.669 3.880 4.247 7.058

SNR 12.137 15.042 14.688 15.174 20.604

Lesion conspicuity 6.4 7.0 7.0 7.4 9.4

50 RMSE 0.0392 0.3525 0.0211 0.0193 0.0029

CNR 2.367 4.394 4.378 4.575 8.037

SNR 9.690 12.971 12.675 13.133 20.118

Lesion conspicuity 7.6 7.4 7.8 7.0 9.2

90 RMSE 0.0396 0.3573 0.0212 0.0195 0.00331

CNR 2.217 4.445 3.997 4.049 7.270

SNR 7.372 10.445 10.312 10.665 17.399

Lesion conspicuity 7.0 6.2 6.0 6.6 8.2

FIGURE 6: RMSE for proposed denoising method versus num-
ber of echoes of multiecho MR images.
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Figure 8 shows the magnified images in ROI B of Fig.

7 at two TEs: 22.2 msec (row a) and 66.28 msec (row b).

This figure shows, from left to right, the original noisy

image and images denoised by various filtering methods.

Figure 9 shows CNR between GM and WM calculat-

ed in the six ROIs of Fig. 7 at short and long TE (22.2

msec (Fig. 9a) and 66.28 msec (Fig. 9b), respectively).

Among the tested denoising methods, the proposed method

achieved the highest CNR for all ROIs and both TEs, thus

confirming that this method best preserves the contrast

between GM and WM with substantial noise reduction.

Table 3 lists the mean CNR values and two subjective

scores for the images in Fig. 8. In this numerical evalua-

tion, the proposed denoising method shows the highest

CNR at both short and long echo times, which suggests

that the boundaries between GM and WM are most effec-

tively preserved by the proposed method. In the subjective

evaluation, the proposed method also receives the highest

scores for GM conspicuity and naturalness at both echo

times.

Figure 10 shows CNRs averaged over the six ROIs for

each of 16 echo times. The standard deviation values of the

six CNR values are also depicted with error bars. For all

echo times, the proposed denoising method consistently

achieves the highest CNR among all denoising methods.

In order to check the statistical significance of the

CNR improvement of the proposed denoising method, P-

values were calculated by a paired t-test between 16 echoes

of CNR values from the proposed denoising method, and

the CNR values from each of the other cases (original noisy,

LPF, ADF, and bilateral). The respective four P-values PP-N,

PP-L, PP-A, and PP-B are 0.0023, 0.0037, 0.0043, and

0.0048. This statistical test confirms that the proposed

denoising method is superior to the other denoising meth-

ods in CNR performance with high statistical significance

(P < 0.005).

Figure 11 presents the denoising results of four differ-

ent subjects (subjects 2–5) at TE 5 38.7 msec. The figure

shows the original noisy images (row a) and their denoised

images by the proposed denoising method (row b). The

FIGURE 7: (a) Original noisy image, (b) image denoised by proposed filter, (c) magnified image of ROI B in (b). Delineated regions
of GM (solid line) and WM (dashed line) are shown in (c).

FIGURE 8: Comparison of magnified images in ROI B in Fig. 7 at TE 5 22.2 msec (row a) and 66.28 msec (row b). Left to right:
original noisy image, images denoised by LPF, ADF, bilateral filter, and proposed denoising method.
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images in row b were denoised using the same threshold

value used to denoise the images in Fig. 7. Notwithstanding

the different subjects, the same threshold value results in

reasonable denoising performance when the body part and

sequence specifications are the same.

Figure 12 compares the denoising results with the con-

ventional filters for the images of subjects 4 and 5 shown in

columns 3 and 4 of Fig. 11, respectively. Subjective evalua-

tions were performed for the conspicuity of subthalamic

nucleus (STN) and red nucleus (RN) in these images, and

the resulting MOS values are presented in Table 4. The

images denoised with the proposed method receive the high-

est STN/RN conspicuity scores.

Discussion

High-SNR multicontrast T2(*)-weighted brain imaging that

uses a robust denoising method was proposed. The pro-

posed denoising method is adapted from neighborhood fil-

ters whose filtering weights are determined by the intensity

or geometric similarity among pixels in a single 2D

image.19,27,28 However, it has been reported that conven-

tional neighborhood filters introduce staircasing artifacts

and artificial patterns on images.21,27 To overcome such

problems, our denoising method extends the intensity or

geometric similarity to tissue-characteristics similarity by

exploiting the third dimension of multiecho MR data,

which is the echo time. Tissue-characteristics similarities,

which determine the filtering weights of our denoising

method, were obtained using Euclidean distance among

temporal signals of pixels.

The effectiveness of our denoising method was demon-

strated by numerical and subjective evaluations in both sim-

ulation and in vivo experiments. Our denoising method

significantly improved RMSE, SNR, and CNR in the

numerical evaluation (P < 0.005), whereas it showed better

MOS of the structure conspicuity (8.2 to 9.4 out of 10)

and naturalness (9.2 to 9.8 out of 10) compared with the

conventional filters in the subjective evaluation. Other

recent studies on denoising MR images have also evaluated

their proposed spatial filters by measuring SNR,32,33

RMSE,33,34 and MOS.33,34 The spatial filters of the conven-

tional studies showed 1.20–1.68-fold,32,33 1.34–1.62-

fold,33,34 and 1.16–1.52-fold33,34 improvement in SNR,

RMSE, and MOS, respectively, compared with the results

of a bilateral filter. Meanwhile, our denoising method

FIGURE 9: CNR between GM and WM at given TE in six ROIs:
(a) TE 5 22.2 msec, (b) TE 5 66.28.

TABLE 3. Mean CNR Values and Two Subjective Scores for Images in Fig. 7

TE (ms) Evaluation metrics Original noisy LPF ADF Bilateral Proposed

22.2 Mean CNR 1.544 2.734 2.850 2.983 5.085

GM conspicuity 5.4 6.0 7.2 7.0 8.8

Naturalness 3.8 5.8 4.0 5.4 9.2

66.28 Mean CNR 1.020 1.793 1.878 1.913 5.634

GM conspicuity 4.2 5.6 6.2 7.0 9.4

Naturalness 3.8 5.8 4.0 7.3 9.8

FIGURE 10: CNR between GM and WM averaged over six
ROIs. Standard deviation is depicted with error bars.
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showed averages of 2.08-fold, 6.72-fold, and 2.42-fold

improvements. Although a direct comparison of our results

with the reported literature values would be difficult because

the subjects, noise level, and sequence parameters are differ-

ent among the studies, our denoising method showed higher

improvement in the three metrics. However, the current

evaluation has some limitations in generalizing the effective-

ness of our denoising method for multiecho brain imaging

for two reasons. First, our denoising method was only

applied to in vivo images acquired with the same acquisition

parameters. Therefore, the high performance of our pro-

posed method in this study is not guaranteed for multiecho

images acquired with other acquisition parameters. Second,

we used only normal-brain images that do not include path-

ological tissues. The denoising performance for pathological

tissues might be different with normal tissues because the

former, such as brain tumors and hemorrhage tissues, have

different tissue characteristics compared with the latter.35,36

Consequently, in order to generalize our denoising method

for multiecho brain imaging, additional experiments for the

images acquired with the sequence parameters commonly

used in clinical settings and various pathological in vivo

brain images are required.

Our denoising method has limitations that need to be

addressed in future studies. The first limitation is that,

because averaging is performed over a number of pixels with

similar tissue characteristics in the image dataset, SNR

improves less in tissues with small populations (such as

veins) than in more-populated tissues, such as GM and

WM. Similarly, B1 or B0-bias field distortion could degrade

FIGURE 11: Denoising results of four different subjects at TE 5 38.7 msec. Original noisy images (row a) and images denoised by
proposed method (row b) are shown.

FIGURE 12: Denoised images at TE 5 38.7 msec for subject 4 (row a) and subject 5 (row b). Left to right: original noisy images,
magnified images of column 1, images denoised by LPF, ADF, bilateral filter, and proposed denoising method.
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the performance of the denoising method. Pixels of similar

tissue characteristics can be measured as different tissues

because of the field distortion-induced signal changes in

multiecho MR data.37–39 Consequently, this results in a

reduction of the number of pixels for averaging and less

SNR improvement. Other studies have also reported that

SNR improvement of less dense pixels is reduced when non-

linear filters are used.40–42 Moreover, to correct this reduc-

tion in SNR improvement, nonlinear filters that can

adaptively set filtering parameters for each pixel have been

presented.40–42 They mainly use a histogram or statistical

distribution of the pixel intensities to set adaptive filtering

parameters. Thus, it would be possible to resolve this limita-

tion by setting the threshold value adaptively based on the

histogram or density of temporal signals. The other limita-

tion is that the processing time of the current implementa-

tion is relatively long. On a standard 8 GB RAM desktop

computer, MatLab requires 41 minutes 32 seconds to pro-

cess 1024 3 1024 images with 16-echo datasets. However,

because many of the calculations of our proposed algorithm

can be parallelized, the processing speed would be highly

accelerated by adoption of a parallel computing scheme.

Future work would include an automatic threshold

optimization. Other nonlinear filters that can automatically

set filtering parameters mainly use background noise level,16

spatially varying noise level,20,43 or image content.44 In our

study, we set the optimal threshold value based on CNR

performance between GM and WM, which is related to tis-

sue detectability.45 Because CNR calculations need ROI

selection for each tissue, the optimal threshold value could

be automatically set if the brain segmentation process were

automated. In this context, many studies on automatic tis-

sue segmentation for MR brain images46,47 could be

adopted for threshold optimization. To further advance

threshold optimization, it would be possible to use other

no-reference image quality metrics, in addition to CNR,

that are highly correlated with the subjective scores mea-

sured by radiologists.30

In conclusion, we acquired high-SNR and high-

resolution T2(*)-weighted brain images via fast multiecho

acquisition followed by a denoising method based on tissue

characteristics. The proposed denoising method effectively

reduced the noise of multiecho images and retained brain

structures with high conspicuity.
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