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Improved Myelin Water Quantification Using
Spatially Regularized Non-negative Least Squares
Algorithm

Dosik Hwang, PhD,1 and Yiping P. Du, PhD2*

Purpose: To improve the myelin water quantification in the
brain in the presence of measurement noise and to in-
crease the visibility of small focal lesions in myelin-water-
fraction (MWF) maps.

Materials and Methods: A spatially regularized non-nega-
tive least squares (srNNLS) algorithm was developed for
robust myelin water quantification in the brain. The regu-
larization for the conventional NNLS algorithm was ex-
panded into the spatial domain in addition to the spectral
domain. Synthetic data simulations were performed to
study the effectiveness of this new algorithm. Experimental
free-induction-decay measurements were obtained using a
multi-gradient-echo pulse sequence and MWF maps were
estimated using the srNNLS algorithm. The results were
compared with other conventional methods.

Results: A substantial decrease in MWF variability was
observed in both simulations and experimental data when
the srNNLS algorithm was applied. As a result, false lesions
in the MWF maps disappeared and the visibility of small
focal lesions improved greatly. On average, the contrast-to-
noise ratio for focal lesions was improved by a factor of 2.

Conclusion: The MWF variability due to the measurement
noise can be substantially reduced and the detection of
small focal lesions can be improved by using the srNNLS
algorithm.
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QUANTITATIVE MEASUREMENTS of myelin content
can substantially improve our understanding of the

pathological progress of several white matter (WM) dis-
eases, such as multiple sclerosis (MS) (1–4). A tech-
nique that provides specific and sensitive information
about the myelin content was developed based on an
analysis of T2 relaxation times (5,6). It has been re-
ported that the T2 spectrum of WM and several myelin-
ated tissue samples consists of multiple components
(7–13) and that the short component with T2 between
10 ms and 50 ms corresponds to the water pool within
the myelin sheath (2–6). Myelin content can therefore
be quantitated using the fraction of this short T2 com-
ponent. To implement this method, T2 decay signals are
acquired using a 32-echo single-slice Carr-Purcell-Mei-
boom-Gill (CPMG) sequence with composite 90x-180y-
90x refocusing pulses and big crusher gradients
around the refocusing pulses (5,6,14,15). A non-nega-
tive least squares (NNLS) algorithm can then be used to
estimate the T2 spectrum from the acquired decay sig-
nal, and the myelin water fraction (MWF) can be calcu-
lated from the ratio of the short T2 component (10 ms �
T2 � 50 ms) to the total (16). A strong correlation was
found between the MWF measured using this technique
and the myelin distribution using histopathology in
fixed brains (4,17). This technique has been used to
quantitatively measure the MWF in brains of subjects
with MS (3–6,17).

T2 spectrum regularization has been applied to the
NNLS algorithm to improve the reliability of fitting in the
presence of noise. The regularized non-negative least
squares (rNNLS) algorithm finds a T2 spectrum that
minimizes the T2 distribution energy such that
1.02�min

2 � �2 � 1.025�min
2 where �min

2 is the minimum
misfit of the unregularized NNLS solution (2,4,18,19).
Despite its improved performance compared with the
original NNLS algorithm, the rNNLS algorithm is still
sensitive to noise in the data. Therefore, to achieve
reasonable SNR before the rNNLS algorithm is applied,
four CPMG acquisitions at 1.5 Tesla (T) are typically
averaged, which makes the total acquisition time as
long as 26 minutes for a single slice (3,4,6,18).

In this study, we expanded the regularization of the
rNNLS algorithm into the spatial domain in addition to
the spectral domain for robust MWF measurements
with reduced sensitivity to noise. A similar spatial reg-
ularization concept was used in the analysis of longitu-
dinal relaxation data for the inverse Laplace transform
to obtain the fractional contributions of WM, gray mat-
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ter (GM), and MWF maps based on the T1 spectrum
(20–22).

The spatially regularized non-negative least squares
(srNNLS) algorithm is based on the assumption that the
T2 spectra among neighboring voxels have a certain
degree of similarity. A priori information about the T2

spectrum of any given voxel can be extracted from its
neighbors and incorporated into the fitting procedure
for robust spectrum estimation. Simulations were per-
formed to assess the effectiveness of the srNNLS algo-
rithm. The visibility of small lesions and the MWF vari-
ability was examined in the presence of noise. For the in
vitro experiments, a multi-gradient-echo (MGRE) pulse
sequence was used to acquire T2* decay signals on a
fixed MS brain. The feasibility of using T2* decay to
measure MWF has been demonstrated previously (23).
MWF maps obtained using the rNNLS algorithm and
the srNNLS algorithm were compared for both the sim-
ulation and in vitro experiments. Finally, the srNNLS
algorithm was applied to in vivo data.

MATERIALS AND METHODS

Data Acquisition

A postmortem MS brain with several focal lesions was
scanned with a 126-echo MGRE sequence on a 3T MRI
scanner (General Electric, Waukesha, WI) with a stan-
dard head-volume coil. The brain was fixed in 10%
buffered formalin for more than a year and then placed
in a water-filled container for scanning after careful
removal of air bubbles. High-order shim was performed
to minimize the field inhomogeneity. The MGRE se-
quence uses a train of readout gradients with alternat-
ing polarity immediately after phase-encoding, similar
to the pulse sequence used in echo-planar spectro-
scopic imaging (24). The echoes were acquired on both
the flat-top and the readout gradient ramps to further
shorten the first echo time (TE1) and echo spacing (ES).
Gradient spoilers were applied to all the three axes at
the end of the readout train to destroy any residual
transverse component of the magnetization. The image
matrix was 256 � 256, repetition time (TR) � 2 s, field
of view (FOV) � 20 cm, slice thickness � 3 mm, TE1 �
2.1 ms, and ES � 1.1 ms. The scan time was 8.5 min.
The acquired k-space data was reconstructed into the
(x, y, t) domain on an off-line computer using recon-
struction software developed in our lab. A T2-FLAIR
image was also obtained for comparison with the esti-
mated MWF maps (TE/TR/TI � 126 ms / 8.8 s / 2.2 s,
matrix size � 256 � 256, FOV � 20 cm, thickness � 3
mm).

For the in vivo experiment, a normal volunteer in his
mid-30s was scanned with the MGRE sequence. An
eight-channel phased-array coil was used and four rep-
etitions were averaged to achieve high SNR (matrix
size � 256 � 256, FOV � 24 cm, slice thickness � 4
mm, total scan time � 34 min).

Data Analysis

The T2* spectra were estimated from the acquired free-
induction-decay (FID) signals for each pixel using the

rNNLS and srNNLS algorithms. The srNNLS algorithm
is as follows:

min
s

��As � y�2 � ��Hs � p�2�

subject to

s � 0 [1]

where s is the T2* spectrum, y is the FID measure-
ments, A is the system matrix which transforms the T2*
spectrum (s) into the FID signals (y) (Aij � exp(�TEi/
T2*j) and y � As), � is the regularization parameter, H is
the weighting matrix which determines the importance
(weight) of each element of s in the minimization pro-
cess (the identity matrix was used for H in this study,
suggesting equal weights for all elements), and p is the
a priori spectrum. The expression in Eq. [1] becomes
the unregularized NNLS algorithm when � is zero, and
becomes the rNNLS algorithm when � is nonzero and p
is zero. For the rNNLS algorithm, � was selected such
that 1.02�min

2 � �2 � 1.025�min
2 where �min

2 is the min-
imum misfit of the unregularized NNLS solution. Once
the spectra for all pixels were obtained using the rNNLS
algorithm, p was estimated and then the final spectrum
was obtained for each pixel using the srNNLS algorithm
(Eq. [1]). The diagram in Figure 1 illustrates the srNNLS
algorithm. Figure 1a shows nine neighboring pixels of a
part of an image. For each pixel, the T2* spectrum is
estimated by the rNNLS algorithm as illustrated in Fig-
ure 1b. The variation of the spectra from one pixel to
another may be large due to the noise in FID signals,
resulting in an increase of MWF variability and spatial
noise in the MWF map. This variation can be reduced by
constraining each spectrum in the spatial domain. The
average of nine spectra in Figure 1b was used as the a
priori spectrum p in Eq. [1] for the final estimation of
the spectrum for pixel 5 (Fig. 1c). The value of � was
selected to keep a level of regularization similar to that
of the rNNLS algorithm.

Simulation of Synthetic Data

Simulations with synthetic image data were performed
to assess MWF variability and the visibility of small

Figure 1. The diagram of the srNNLS algorithm (hypothetical
illustration). a: Nine neighboring pixels of a part of an image,
(b) T2 spectrum for each pixel estimated using the rNNLS
algorithm, (c) the estimated a priori spectrum for the pixel 5.
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lesions in the presence of noise. Three synthetic data-
sets with different SNRs and contrasts were used in the
simulations. Figure 2a shows the synthetic images in
which the background represents a normal WM and the
black circles represent MS lesions. The radius of lesions
varied from 0.5 to 7 pixels. The smallest lesion had the
size of a single pixel. Each pixel in the synthetic images
had a T2* spectrum which consisted of two main peaks
at 7 ms and 60 ms, with the short T2* component
representing the myelin water and the long T2* compo-
nent representing the intra/extracellular water. MWF
was defined as the ratio of the signal in the T2* distri-
bution 3 ms � T2* � 16 ms to the total signal. The MWF
of the normal WM was set to be 15%. The MWF of the
lesions varied from 0 to 7.5%. The FID signal consisted
of 126 echoes. TE1 was 2.1 ms and ES was 1.1 ms.
Gaussian noise was added to the FID signals to reach
three different SNR values (70, 100, 150) at TE1. The
FID signals from each dataset were fitted using the
rNNLS algorithm and the srNNLS algorithm to estimate
the T2* spectrum and determine MWF. The MWF maps
estimated using these two methods were visually com-
pared and contrast-to-noise ratios (CNR) for small focal
lesions were examined. CNR was defined as follows:
CNR � � MWFlesion - MWFWM � / SDWM, where MWFlesion is
the MWF value of the single-pixel lesion, MWFWM is the
mean MWF of the surrounding WM (eight pixels), and
SDWM is the standard deviation of the MWF of the sur-
rounding WM. In addition, the MWF maps estimated
using the rNNLS algorithm were filtered using a spatial
low-pass filter (Gaussian with a standard distribution
of 0.6 pixels) and compared with the maps estimated
using the srNNLS algorithm. We performed this com-
parison to illustrate how effective the srNNLS algorithm
is at reducing spatial noise and improving the visibility

of small lesions without compromising spatial resolu-
tion.

RESULTS

Figure 2 shows (a) the MWF map template for the syn-
thetic data, (b) the MWF maps estimated using the
rNNLS algorithm (MWFrNNLS), (c) their low-pass filtered
images (MWFrNNLS,filtered), and (d) the MWF maps esti-
mated using the srNNLS algorithm (MWFsrNNLS), from
the left to the right column, respectively. The top row
shows the estimated MWF maps from the synthetic
data in which SNR � 100 and the MWF of lesions � 0%
(the intensity of the first peak (at 7 ms) in the T2*
spectrum was set to zero for the lesions). The MWFrNNLS

map contains high spatial noise and the smallest lesion
(a single-pixel lesion) is not conspicuous. In the low-
pass filtered map, the spatial noise was reduced, but
the smallest lesion was still not conspicuous and the
edges of other lesions were smoothed. In contrast, the
MWFsrNNLS map showed improved small lesion visibility
and sharp edges with a substantial noise reduction.
The middle row shows the estimated MWF maps from
the synthetic data in which SNR � 70 and the MWF of
lesions � 7.5% (the intensity of the first peak at 7 ms in
the T2* spectrum was rescaled such that the MWF of the
pixels in the lesions was 0.075). The overall noise level
in the MWF maps was higher and the contrast was
reduced compared with the top row. The smallest lesion
was not detectable in any of the three maps. The origi-
nal shapes and edges of lesions were best represented
in the MWFsrNNLS map. More quantitatively, the similar-
ity in shape between the original lesions and those
estimated based on MWF maps was measured using
correlation coefficients (25) (Table 1). On average, the

Figure 2. a–d: Simulation studies. The back-
ground represents WM (MWF � 15%). The dark
circles represent MS lesions. Top row: SNR �
100, MWF of lesions � 0%. Middle row: SNR �
70, MWF of lesions � 7.5%. Bottom row: SNR �
150, MWF of lesions � 3%. The MWF maps es-
timated using the srNNLS algorithm show the
greatest visibility of small lesions with a sub-
stantial reduction of spatial noise.

Table 1
Correlation Coefficients Between the Original Lesions and the Estimated Ones

Lesions 1 2 3 4 5 6 7 8 9 Average

rNNLS 0.176 0.759 0.787 0.823 0.715 0.769 0.759 0.742 0.750 0.698
rNNLS	filtered 0.205 0.773 0.863 0.865 0.837 0.875 0.875 0.885 0.882 0.784
srNNLS 0.580 0.810 0.932 0.897 0.877 0.920 0.917 0.914 0.919 0.863
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correlation coefficients were 0.698, 0.784, and 0.863
for the rNNLS, rNNLS	filtered, and srNNLS algorithms,
respectively. The bottom row shows the estimated MWF
maps from the synthetic data in which SNR � 150 and
the MWF of lesions � 3% (the intensity of the first peak
at 7 ms in the T2* spectrum was rescaled such that the
MWF of the lesions was 0.03). All single-pixel lesions
were identifiable in all three maps, but the MWFsrNNLS

map showed the highest visibility of the lesions. The
graph in Figure 3 shows the CNR differences among the
three different MWF maps. The CNR was measured
between the single-pixel lesion and its surrounding WM
pixels for all MWF maps. The CNR improved substan-
tially when MWF was measured using the srNNLS al-
gorithm compared with the rNNLS algorithm. Spatial
low-pass filtering did not improve the CNR for these
single-pixel lesions.

Figure 4 shows the results of the postmortem MS
brain studies: (a) T2-FLAIR image, (b) MWFrNNLS map,
and (c) MWFsrNNLS map at the same slice location of the
fixed MS brain. The calculation time for the 256 � 256
MWF maps was 5.4 h and 7.1 h for the rNNLS and
srNNLS algorithms, respectively (Intel Core™2 Duo
CPU T7300 at 2.0 GHz, 2 GB of RAM). Seven focal
lesions are indicated by arrows. The myelin water signal
was well detected in regions of normal-appearing WM in

both MWF maps. The MWF was substantially reduced
at the locations of focal MS lesions and regions of GM.
The MWFrNNLS map, however, contains high spatial
noise and the visibility of small lesions was reduced
considerably. This type of spatial noise in the MWF map
was previously described by Jones et al (18) as artifac-
tual “holes,” because they might be mistaken for small
lesions. Some small lesions were barely differentiable
from these “holes” in the MWFrNNLS map. In contrast,
this hole-type noise was substantially reduced in the
MWFsrNNLS map, and small lesions had improved visi-
bility. The shapes and sizes of several lesions indicated
by arrows in the T2-FLAIR image are well depicted in
this map. The edges of lesions and WM are also well
preserved in the MWFsrNNLS map. The correlation coef-
ficients were also measured between the lesions in the
T2-FLAIR image and those in the MWF maps (Table 2).
On average, the correlation coefficients were 0.544 and
0.804 for the rNNLS and srNNLS algorithms, respec-
tively. The graph in Figure 5 shows the CNR difference
between the MWFrNNLS map and the MWFsrNNLS map.
CNRs were measured on seven focal lesions indicated
by arrows in Figure 4a. The ROIs for the inside/outside
of lesions were drawn manually (the numbers of pixels
inside/outside of lesions were 5/37, 4/20, 13/82, 18/
87, 7/50, 28/88, and 20/63 for the lesions 1 
 7,
respectively). The CNR improved substantially in all
lesions when MWF was measured using the srNNLS
algorithm, compared with that of the rNNLS algorithm.
On average, the CNR improved by a factor of 2.14.

Figure 6 shows several MWF maps with different �
values: �(srNNLS) � ��(rNNLS), where � � 2, 4, 10, 15, 20,
30, 40, and 50. The MWF map with � � 2 still contains
many “holes” and small lesions are not clearly visible.
On maps with � � 15 and 20, several small focal lesions
are clearly visible with sharp WM and GM boundaries.
Lesions are still visible on the maps with � of 30, 40,
and 50, but there is a blurring effect throughout the
images. The CNRs of seven focal lesions were measured
with different � values to find the optimal �, as shown in

Figure 3. Contrast-to-noise ratio (CNR) for the single-pixel
lesions in simulations (top, middle, and bottom rows in Fig. 2).
The CNR was substantially improved when MWF was mea-
sured using the srNNLS algorithm, compared with the rNNLS
algorithm. The spatial low-pass filtering did not improve the
CNR.

Figure 4. In vitro experiments.
T2-FLAIR image (a), MWFrNNLS

(b), MWFsrNNLS (c) for a fixed MS
brain. Several focal MS lesions
are indicated by arrows. MW-
FrNNLS contains high spatial
noise and the visibility of small
focal lesions is low. MWFsrNNLS

shows an improved visibility of
lesions with a substantial re-
duction of spatial noise.

Table 2
Correlation Coefficients Between the Lesions in the T2-FLAIR
Image and the Estimated Ones

Lesions 1 2 3 4 5 6 7 Average

rNNLS 0.591 0.438 0.577 0.579 0.338 0.579 0.656 0.544
srNNLS 0.890 0.726 0.766 0.795 0.782 0.741 0.844 0.804
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Figure 7. The CNRs of large lesions (lesion 3 and 6)
slowly increased and reached their plateaus around � �
20 
 25. The CNRs of small lesions (lesion 2 and 5)
reached their maxima around � � 10 
 15 and kept
decreasing as � increased further. The optimal range of
� can be found between � � 15 and 20.

Figure 8 shows MWF maps from the in vivo experi-
ments. The MWFrNNLS map (b) contains high spatial
noise and many “holes.” In contrast, this hole-type
noise was substantially reduced in the MWFsrNNLS map
(c).

DISCUSSION

Our results demonstrate that the srNNLS algorithm can
produce robust MWF measurements. The MWF vari-
ability decreased substantially with the use of the
srNNLS algorithm compared with that using the rNNLS
algorithm, in both simulations and the analysis of in
vitro and in vivo MGRE data. This decrease in MWF
variability resulted in the reduction of spatial noise in
the MWF map and increased small MS lesion visibility.

Conventional low-pass spatial filters reduced the noise,
at the expense of increased blurring and reduced visi-
bility of small lesions. In contrast, the srNNLS algo-
rithm effectively reduced the spatial noise, improved
the visibility of small focal lesions, and preserved sharp
boundaries of lesions and WM in the MWF maps.

An edge-preserving nonlinear filter has also been
used to reduce noise in MWF maps. Nonlinear filters
such as median filter and anisotropic diffusion filter
(ADF) are known to be effective in reducing noise while
preserving sharp edges. However, they also tend to in-
troduce artifacts such as flat zones and boundaries
inside smooth regions (26,27). In our preliminary stud-
ies (data not shown), the application of ADF success-
fully reduced many false “holes” without compromising
spatial resolution as previously demonstrated in Jones
et al (18). However, a certain degree of unnatural ap-
pearance (flat zones and boundaries) was observed in
the MWF map. For applications in which this type of
unnatural appearance is unimportant, the srNNLS al-
gorithm could be combined with ADF to further reduce
the noise. We observed that noise along the boundaries
of WM and GM that was present in the MWFADF	rNNLS

map, was substantially reduced in the MWFADF	srNNLS

Figure 5. CNR for the MS lesions of the fixed brain. On aver-
age, the CNR was improved by a factor of 2 when MWF was
measured using the srNNLS algorithm, compared with the
rNNLS algorithm.

Figure 6. Effect of regularization strength, �(srNNLS) � ��(rNNLS),
where � � 2, 4, 10, 15, 20, 30, 40, and 50. The MWF map with �
� 2 still contains many “holes” and the visibility of small lesions
is low. The MWF maps with � � 15 and 20 show an improved
visibility of several small focal lesions with sharp boundaries of
WM and GM. The maps with � � 30, 40, and 50 still show
reasonable visibility of lesions but have introduced blurring effect
throughout the images.

Figure 7. Effect of regularization strength: CNR of focal le-
sions with different regularization strength, �(srNNLS) �
��(rNNLS). The CNR’s of large lesions (lesion 3 and 6) slowly
increased and reached their plateaus around � � 20 
 25. The
CNR’s of small lesions (lesion 2 and 5) reached their maxima
around � � 10 
 15, and kept decreasing as � increased
further. The optimal range of � can be found between 15 and
20.

Figure 8. In vivo experiment. Anatomical images at TE � 17.4
ms (a), MWFrNNLS (b), MWFsrNNLS (c) for a living brain. MWFrNNLS

contains high spatial noise and many “holes.” This hole-type
noise has been substantially reduced in MWFsrNNLS.
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map leading to clean, sharp, and continuous edges. The
visibility of focal lesions was also improved.

The regularization parameter (�) should be carefully
chosen for optimal performance. If � is too low, the
srNNLS algorithm will not produce better MWF maps
than the rNNLS algorithm. If � is too high, excessive
blurring will be introduced to the MWF map. In the
current implementation of the srNNLS algorithm, � was
selected to ensure a similar regularization strength to
that in the rNNLS algorithm. In the rNNLS algorithm, �
was chosen to meet the previously described criteria,
1.02�min

2 � �2 � 1.025�min
2 , which maintains a balance

between the first ( �As � y�2) and second (�Hs � p�2)
terms of Eq. [1] in the minimization process. To keep a
similar regularization strength in the srNNLS algo-
rithm, different values of � should be used because p is
nonzero in the srNNLS algorithm. In the simulations,
the ratio of the second term of Eq. [1] in the rNNLS
algorithm to that of the srNNLS algorithm, �Hs � 0�2 /
�Hs � p�2, was approximately 10. Therefore, a new �
value, �(srNNLS) � 10 �(rNNLS) was used in the analyses of
the synthetic and experimental data in our study.

The srNNLS algorithm also performed better than the
rNNLS algorithm when applied to in vivo data. Hole-type
noise was substantially reduced in MWFsrNNLS maps.

A more sophisticated method to estimate the a priori
spectrum, p, needs further investigation. In the current
implementation of the srNNLS algorithm, p was calcu-
lated by averaging the spectra of nine neighboring pix-
els estimated using the rNNLS algorithm. The optimal
range of neighbors and the corresponding weighting
scheme may lead to a better estimation of the a priori
spectrum, which in turn would produce a better MWF
estimation. Expansion of the regularization into the z
direction, resulting in a four-dimensional regulariza-
tion (x-y-z-T2*), may further improve the estimation of
the a priori spectrum. In this case, the z resolution
needs to be commensurate with the in-plane resolution
or an appropriate weighting scheme should be devel-
oped.

In conclusion, this study demonstrates that spatial
regularization of the NNLS algorithm can substantially
reduce spatial noise in MWF measurements and im-
prove the visibility of small focal lesions in MWF maps.
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