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ABSTRACT In modern digital photographs, most images have low dynamic range (LDR) formats, which
means that the range of light intensities from the darkest to the brightest is much lower than the range that
can be perceived by the human eye. Therefore, to visualize images as naturally as possible on devices that
display them in high dynamic range (HDR) format, the LDR images need to be converted into HDR images.
The aim of this study was to develop an adaptive inverse tone mapping operator iTMO) that can convert a
single LDR image into a realistic HDR image based on artificial neural networks. In contrast to conventional
iTMO algorithms, our technique was developed by learning the complicated relationship between various
LDR-HDR pair images, which enabled nearly ground-truth HDR images to be generated from various types
of LDR images. The novel learning technique is called cumulative histogram-based learning and color
difference learning. The superior performance of our technique over conventional methods was assessed
through objective evaluations of various types of LDR and HDR images.

INDEX TERMS High dynamic range, inverse tone mapping operator, cumulative histogram, color

difference, convolutional neural network.

I. INTRODUCTION
In photographs, the dynamic range refers to the luminance
range from the darkest region to the brightest region. It is
known that the dynamic range that can be perceived by
the human eyes at once is ~ 1037 (= 5000) cd/m? [1].
However, most dynamic ranges commonly used in current
digital displays are below 300 cd/m?. This is referred to
as a low dynamic range (LDR). If the expressed dynamic
range is narrow, the differences in brightness that human
eyes can distinguish may be displayed as a constant level
of brightness. Wide dynamic range scenes, such as sunrises
or sunsets, cannot properly be captured or displayed using
LDR settings. As such, the current LDR technologies are
insufficient to attain the levels of perception made possible
by the human eyes. Therefore, techniques that can expand the
dynamic range of images as wide as the cognitive range of the
human eye are necessary.

High dynamic range (HDR) technologies have recently
been developed. These technologies expand the dynamic
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range represented by conventional LDRs, thereby increasing
the contrast ratio of the image. HDR displaying devices that
can support 1000 cd/m? and 10-bit images are also being
made available. Conventional LDR images can represent only
256 color levels, because there are only 8 bits available to
express individual pixel intensity. Therefore, because LDR
images are not effectively displayed on 10-bit HDR display
panels, techniques to obtain HDR images are becoming more
important.

To obtain HDR images, it is necessary to combine sev-
eral LDR images with different exposure values to create a
HDR image with a wide dynamic range [2]. However, while
acquiring multiple LDR images, movements of the camera or
objects to be captured often occur and cause the appearance
of artifacts, such as ghost artifacts [3], during the process of
combining the images. Several methods have been proposed
to eliminate such artifacts, but they have failed to completely
remove them [4]. With the development of modern technol-
ogy, single-shot HDR imaging has become available. There
are a variety of methods, including the capture of a single-shot
HDR using a spatially varying imaging sensor [5] and the
recovery of a HDR image by convolutional sparse coding [6].
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However, these technologies have limitations such as the
need to shoot with a specially manufactured camera and
the degradation of resolution. Furthermore, large amounts of
image data collected in LDR formats need to be converted
into HDR formats to be properly visualized on HDR displays.
The conversion process is referred to as inverse tone mapping.
Several methods using inverse tone mapping operator
(iTMO) algorithms have been proposed to expand LDR to
HDR based on mathematical models. However, when using
such models to convert images, it is difficult to consider
the individual characteristics of each image, thus resulting
in suboptimal HDR images that are different from the true
HDR images. Recently, deep neural networks perform well in
computer vision fields for problems that are difficult to solve
using traditional algorithms. In the field of iTMO technol-
ogy, many deep learning based iTMOs have been proposed
to overcome the limitations of the existing methods and to
increase the adaptability of various types of images as well.
In Related work section, we will introduce various iTMOs in
detail from the traditional methods to the latest deep learning
methods.

We also proposed a new robust technique that converts
LDR images into HDR images with an expanded dynamic
range that is significantly closer to the true HDR using
deep learning. The main differences between our proposed
method and conventional learning approaches are as follows:
(1) Efficiently learns the difference between LDR and HDR
images using the CIEL*a*b* color domain instead of the
RGB color domain; (2) Solves small dataset problems using
transfer learning; (3) Effectively estimates HDR brightness
image using cumulative histograms learning and histogram
matching, not image-based learning; (4) Learns not only
brightness but also color using color different loss function.

Il. RELATED WORK

Over the years, several iTMO methods have been proposed
based on various mathematical models and by incorporating
knowledge of the human visual system. Akyiiz et al. [7]
proposed the use of a simple linear expanding method based
on their psychophysical investigation. They suggested that a
simple linear boost of the range of a LDR image to fita HDR
display could equal or even surpass the appearance of a true
HDR image. However, over-exposed areas are problematic,
particularly when the portion of the over-exposed area is large
in images. Therefore, several sophisticated algorithms have
been developed. Meylan et al. [8] proposed the use of a piece-
wise linear tone scale function composed of two slopes for
LDR-HDR conversion to reduce the large gap between the
normal range of luminance (diffuse area) and the very high
range of luminance (specular area) in images to recover the
natural look of the original HDR scenes. Masia et al. proposed
some nonlinear global functions based on a gamma curve [9]
to handle the overall luminance differences of individual
images and selective tone mapping methods [10] selectively
applied to local areas in images, depending on different zones
or salient contexts. Banterle et al. [11] proposed a general
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framework to convert LDR images into HDR images based
on the inverse of the Reinhard tone mapping operator (TMO)
algorithm [12]. They estimated the light sources in images
and generated the Expand Map to mitigate abrupt changes
in high luminance areas via a linear interpolation between
the original LDR and the estimated HDR images. Based on
this technique, several problems associated with the direct
inversion process were overcome. Recently, Huo et al. [13]
proposed a physiological inverse tone mapping algorithm
that considers the characteristics of the human visual system
(HVS). In a manner similar to the local response of the
HVS to visual stimuli (local retinal response) [14], they used
a mathematical retinal response model that can locally be
adapted to different areas depending on the estimated local
average luminance to replicate the physiological process that
underlies the perception of light. They demonstrated that their
method reduced the formation of artifacts and produced HDR
images of high visual quality. Although all these methods,
including those not mentioned here, can produce appealing
HDR images, they are based on a very limited number of
mathematical models and partial knowledge of HVS that
human researchers can think of and implement in practice.
Consequently, these models cannot be used to handle various
types of images, and their HDR estimation is significantly
different from ground-truth HDR images even though they
can produce a good HDR impression. Therefore, there is a
need to develop a new method to produce a HDR image
from a single LDR image that is significantly identical to the
ground-truth HDR image.

In this paper, we propose a new data-driven method
to estimate the ground-truth HDR image from a single
LDR image using a deep learning method. Using this
method, the complicated nonlinear relationship between LDR
and HDR images can be learned from various types of
LDR-HDR pairs. Very recently, deep learning approaches
have been proposed to generate HDR images from single
LDR images. Zhang and Lalonde [15] used an autoen-
coder network to produce HDR panoramas from single LDR
panoramas. Although good HDR images were produced, the
group’s work was limited to outdoor panoramas in which the
sun was assumed to be in the same azimuthal position in all
images, and the resolution of the generated HDR images was
too low (128 x 64) to clearly show the details of these images.
Kalantari and Ramamoorthi [16] generated HDR images
from three unfixed LDR images with different exposure
values. In general, because of ghost artifacts, the images
used for synthesizing must be fixed. However, their method
solved the ghost artifact problem by aligning the over- and
under-exposure value images based on the middle exposure
value image. However, there is a limitation that a single
LDR image alone cannot generate a HDR image. Eilertsen
et al. [17] used a similar autoencoder network with several
modifications and logarithmic loss functions. They demon-
strated a successful reconstruction of various HDR images.
The limitations of their work were the difficulty in recovering
dark regions and the underestimation of extreme intensities.
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Furthermore, a user-specified parameter for the loss func-
tion needed to be tuned for assigning different importance
levels to the illuminance and reflection components. Endo
et al. [18] proposed the use of a deep learning technique
to learn several bracketed images with different exposures
and subsequently combine them to produce HDR images.
They also successfully inferred HDR images from single
LDR images. However, the limitations of their work were
the difficulty in handling an extremely high dynamic range
and the necessity for a large memory owing to the multiple
learnings required to generate intermediate multiple exposure
images. Some tiling artifacts have been reported, and the
selection of appropriate LDR images to combine is yet to be
heuristically determined. Lee et al. [19] proposed a method
of generating images with various exposure values (EVs)
from a LDR image with EV 0. Endo’s method infers multiple
exposure images at once, but they used a chain convolutional
neural network (CNN) architecture that sequentially infers
EV +£1, £2, +3 with a LDR image that has a medium expo-
sure value (EV 0). Marnerides et al. [20] proposed multiscale
deep learning architecture, which is based on a CNN consist-
ing of three branches that learn local detail, medium-level
detail, and higher-level image-wide features. The method
successfully inferred HDR images by learning various
local and global features. However, LDR images generated
from HDR images by TMO and not LDR-HDR pair data
were used.

lll. METHODS

The overall procedure of our iTMO development is as fol-
lows: (1) a training dataset preparation for LDR—-HDR image
pairs, (2) brightness and chromatic image extraction, (3) deep
learning of the relationship between cumulative histograms
for LDR and HDR pairs, (4) the brightness of HDR image
generation via histogram matching using the estimated HDR
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(2)Brightness Extraction

F

Cumulative
Histogram Learning
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Cumulative Histogram of HDR

/

cumulative distribution function (CDF), (5) recombination of
the estimated brightness and the chromatic of LDR image,
and (6) deep learning of the relationship between color in
LDR and HDR pairs. The overall framework of the proposed
method is shown in Figure 1.

A. DATASET
For a successful development of the data-driven iTMO algo-
rithm via deep learning, a good training dataset with various
types of images, structures, contrasts, and properties was
essential. However, as it is difficult to collect open-source
LDR-HDR pair images, we generated our own set of LDR—
HDR pair images. We captured 450 different scene images
using a Samsung NX3000 camera in the autoexposure bracket
mode (—2, 0,2 EV) at aresolution of 1024 x 1024 pixels. The
dataset consists of various scenes of the following categories:
indoor, outdoor, landscape, objects, buildings, and nights.
The number of images for each category is 132, 101, 57,
52, 30, and 78, respectively. We set the aperture value to /4,
the ISO value to 100, and the shutter speed automatically
using the autobracketing function. Ground-truth HDR images
were generated by merging these three LDR images using the
HDR Pro algorithm developed by Debevec and Malik [21]
(built in Adobe Photoshop CC 2018). The data used in the
experiment was set up with LDR (EV = 0) and HDR images
pair images. Our dataset used for the experiment is available
at: https://github.com/HanbyolJang/LDR-HDR-pair_Dataset
The total images were divided into 5-folds for cross-
validation to prevent overfitting [22]. 4 subsets (360 images)
were used for training & validation and the remaining subset
(90 images) was used for testing. A total of 5 models were
trained using the all different combination of subsets and per-
formance was evaluated using a test set not used for learning.
All the HDR images in this paper are tone mapped by
Reinhard’s TMO [23] to visualize them in a conventional
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FIGURE 1. Overall framework of the proposed method. Pairs of LDR-HDR images are prepared for the deep learning process. The brightness values are
extracted from images, and the relationships between the LDR and HDR cumulative histograms are learned. An estimated HDR brightness image is
generated via a histogram matching method using the estimated HDR cumulative distribution function, and the estimated brightness image and the
chromatic of the LDR image are recombined. The final HDR image is generated by learning the relationship between LDR and HDR color.
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LDR display setting for the readers. No gamma correction
or other processes were performed. In Figure 2, examples of
LDR-HDR image pairs used in our study are shown. When
comparing LDR-HDR images, overexposed bright areas and
underexposed dark areas, which are not visible in the LDR
images, can be clearly seen in the HDR images.

FIGURE 2. Examples of LDR-HDR (tone mapped) pair images. LDR images
in the top row contain over- and underexposed areas, where structures
and details are not easily observable. However, HDR counterparts in the
bottom row clearly show the details in both the dark and bright regions.

B. BRIGHTNESS EXTRACTION

Images can be expressed in several color spaces such as RGB,
CMYK, and CIEL*a*b* [24]. As the dominant difference
between LDR and HDR images resides in the brightness,
we converted images in the RGB space into images in the
CIEL*a*b* space and decomposed them into the brightness
channel (L*) and the chromatic channels (a*, b*). The color
space conversion is provided in Appendix A. Using various
images, we calculated the difference between LDR and HDR
images in individual channels to identify the channel that
manifests the most pronounced difference. This difference
was calculated using a normalized root mean square error
metric [25], as shown in Eq. (1):

Vi DM Y IR () — 16 )P
max (R) — min (R)

NRMSE (%) =
(D

where R is the reference image (HDR image), I is the input
image (LDR image), (x, y) is the pixel index, M x N is the
image size, max(R) is the maximum pixel intensity of the
reference image, and min(R)is the minimum pixel intensity of
the reference image. In Figure 3, the difference between LDR
and HDR at each channel is shown. The difference is large in
all individual R (47%), G (47%), and B (46%) channels in
the RGB space, while it is large only in the L* (49%) channel
and negligible in the a* (1.6%) and b* (1.6%) channels in
the CIEL*a*b* space. Therefore, it was more efficient to
learn the brightness relationship between the LDR and HDR
images than to learn the mixed RGB relationship between
these images.

C. CUMULATIVE HISTOGRAM LEARNING
In Figure 4, examples of LDR and HDR images in (a) and (b),
respectively are shown. The area inside the orange box of the
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FIGURE 3. Difference (%) between LDR and HDR images at the individual
channels: R, G, and B in the RGB color space, and L*, a* and b* in the
CIEL*a*b* color space. The difference is large at all three R, G, and

B channels, while it is large only at L* channel and negligible at

the a@* and b* channels.
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FIGURE 4. Comparison of the LDR and HDR images and their histograms:
(a) LDR image indicating dark and bright regions where visibilities of the
inside contents are very low. (b) HDR image (tone mapped) with good
visibility throughout the image. (c) histograms of LDR and HDR brightness
images. (d) cumulative histograms of LDR and HDR brightness images.
Cumulative histograms have low complexity, and the difference between
the LDR and HDR histograms is low when compared with the original
histograms.

LDR image is too dark to indicate the detailed contents in it,
whereas the details with good contrast can be clearly seen in
the HDR image. A similar observation can be made in the area
inside the blue box, which is too bright to indicate the detailed
contents in the LDR image, whereas the details of the HDR
image are clear. These observations can be explained through
histograms of the images. In Figure 4(c) and (d), the his-
tograms and the cumulative histograms of the LDR and HDR
brightness images are shown, respectively. The pixels in the
LDR image is scarcely present between 0 and 20 and most of
the values between 80 and 100 are concentrated, thus result-
ing in very low contrasts within these compact brightness
ranges. However, the pixels in the HDR image are widely
distributed throughout the entire brightness range; therefore,
good contrasts and visibility can be observed consistently in
the HDR images.
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There are several methods that change the contrast of an
image using a histogram. Conventional histogram equaliza-
tion algorithms may be applied to distribute the LDR his-
tograms as widely as possible, thus increasing the contrasts
of the dark and bright regions to resemble HDR images.
However, the resultant images are not generally perceived
to be natural by human observers, because they deviate
from the natural tones of the original photographs. If we
were able to convert LDR histograms into histograms that
are nearly identical to the ground-truth HDR histograms,
we could generate good-quality HDR images from single
LDR images. However, no fixed transfer function that can
convert a LDR histogram into a HDR histogram is known
because individual images have their own characteristic his-
tograms depending on factors such as type of scene, lighting
sources, and structures. The aforementioned model-based
iTMO algorithms in Section II were used in an attempt to
overcome these obstacles by incorporating various functions
such as linear, piecewise linear, nonlinear, zone- or context-
adaptive, and local-adaptive response functions; however,
the algorithms or these functions could not be generalized for
various types of images. Furthermore, their outputs deviate
from the ground-truth HDR images.

In this paper, we attempt to overcome this obstacle by using
deep learning to investigate the relationship between the LDR
and HDR histograms from various types of LDR-HDR image
pairs. One problem in this approach is that the shape and
features of histograms are too complicated to be learned even
when using the current advanced deep learning techniques.
Figure 4(c) clearly shows the large differences between the
LDR and HDR histograms in terms of shape, density, local
variations, etc. In our preliminary studies, the direct learning
of the LDR and HDR histograms failed to produce good
estimates of the ground-truth HDR histograms for these
differences. However, the cumulative histograms of images
have learning-favorable properties, as shown in Figure 4(d).
Both the LDR and HDR cumulative histograms have smooth
curves from the lowest to the highest brightness levels and
always end with the same total number of pixels in the image.
In addition, local variations have been reduced significantly.
Consequently, the overall complexity of the cumulative his-
tograms is very low, and the differences between the LDR
and HDR cumulative histograms are also low when compared
with the original histograms. Therefore, we applied deep
learning to study the relationship between the cumulative
histograms corresponding to the LDR and HDR images.

D. CUMULATIVE HISTOGRAM LEARNING ARCHITECTURE
In Figure 5, the deep CNN structure for cumulative his-
togram learning is shown. This network structure is based on
VGG [26] and ResNET structures [27]. As a loss function,
we used the L2 norm between the estimated CDF and the
ground-truth CDF as described in equation (2).

2
Losscpr = Z (CDFgroudn—truth - CDFoutput) 2
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FIGURE 5. Cumulative histogram learning architecture: CNNs with a
one-dimensional convolution kernel, ReLU for the activation function,
and skip connections to include features extracted from previous layers.
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The total number of convolution layers was 60, and the recti-
fied linear unit (ReLU) for the activation function was applied
after each layer. After every three layers, skip connections
were added to include the features extracted from previous
layers. In our preliminary experiments, networks without
these skip connections resulted in insufficient estimations.
Several intervals between the layers to which the skip con-
nections are to be applied were investigated, and a three-layer
interval for the skip connection yielded the best performance.
The number of bins for the cumulative histograms was set
to 512. And the kernel size of each 2D convolution layer
was 11 x 1 and the number of feature maps was 64, except
in the final convolution layer. For the kernel size in the
convolution process, 11 x 1 resulted in the best estimation
of HDR cumulative histograms. This is because the receptive
field of the network was 601 [= (11 — 1) x60 + 1], which was
enough to include 512 bins of cumulative histograms [28].
The total number of parameters of the cumulative histogram
learning network is 10,224,660. Our model was implemented
in the Python with Keras using Tensorflow library on an Intel
Core 17-6700K CPU with a Nvidia GeForce GTX 1080Ti
GPU and 32-GB RAM. Adam optimizer was used with an
initial learning rate of 1x 107>, and training was performed
until validation error saturation occurred. The total training
time was 27 minutes, and the test time for an image with
1024 x 1024 resolution took 8 milliseconds in the cumulative
histogram learning model. According to the definition of a
cumulative histogram, its curve should be a nondecreasing
function. However, the proposed deep learning model may
produce slightly decreasing patterns within short intervals
in some cases. In such cases, the decreasing portions of
the cumulative histograms was post-processed to be auto-
matically corrected using an efficient interpolation function
(piecewise cubic hermite interpolating polynomial [29]).

E. TRANSFER LEARNING

Deep learning neural networks, learning the complex rela-
tionship between input and output, are generalized with the
use of large amounts of data. Therefore, the 450 LDR-HDR
pair images that were available for this study were
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not sufficient. Generally, to solve the problem of data short-
age, augmentation is performed. Augmentation is a method
used to avoid overfitting and make better generalizations by
increasing the number of data through transformations such
as left and right reversal or rotation. However, we propose
cumulative histogram learning in this paper. As the cumula-
tive histogram is the sum of histograms for the intensity of
the pixels in the image, histograms are the same even when
augmentation is performed. For this reason, because augmen-
tation is not applicable, we applied transfer learning using
pre-trained weights on large dataset [17]. Transfer learning is
a method of subsequent learning with weights extracted from
related domains to help learning in a target domain with few
data. In other words, fine-tuning the pre-trained weights to
the target domain.

To generate a pretrained model from numerous data
in the relevant domain, we generated a set of LDR and
pseudo- HDR pair images from a single raw image. We col-
lected 8156 high-resolution raw images from an open-source
RAISE database [30]. The RAISE dataset contains a
wide range of different categories of scenes: ‘“‘outdoor,”
“indoor,” “landscape,” “nature,” “‘people,” ““‘objects,” and
“buildings.” The raw images taken with a digital cam-
era without compression or processing are 12- to 14-bit
images [31]. We adjusted the exposure values (—2, —1, 0, +1,
+2) from a single raw image and then generated five different
LDR images [32]-[34]. We merged these five LDR images
using the HDR Pro algorithm. It was defined as a pseudo-
HDR because the resulting image was generated by merging
LDR images with different exposure values from one raw
image rather than LDR images obtained by taking different
exposure values. Pseudo-HDR images are not exactly the
same as true HDR images; however, the expansion of the
dynamic range is similar, because it is generated from LDR
images of various exposure values. Among the 8156 image
pairs, 156 images were used for the test set and 8000 images
were used for the training and validation set of the pretrained
model. In conclusion, our network first learns the relationship
between 8000 LDR and pseudo-HDR pair images, and then
fine-tunes the learned weights to LDR and true HDR pair
images.

99 ¢ LT3

F. HDR BRIGHTNESS IMAGE GENERATION VIA
HISTOGRAM MATCHING

Figure 6(a) demonstrates that the HDR brightness value can
be obtained using the histogram matching technique [35] with
the estimated HDR cumulative histogram. The X-axis repre-
sents the brightness values (0—100) for the LDR and HDR
images, and the Y-axis represents the normalized number of
accumulated pixels. The blue and orange curves represent the
cumulative distribution functions f7 (x) for LDR and fy(x)
for HDR brightness images, respectively. For an arbitrary
brightness value x in an LDR image, its corresponding HDR
brightness value x’ can be estimated as follows: (1) find the
function value of f (x) at x and (2) find the HDR brightness
value x’ that makes fz (x") = f1(x). The value of x* becomes
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FIGURE 6. Histogram matching and HDR image generation: (a) flow of
histogram matching technique, (b) LDR brightness image, (c) estimated
HDR brightness image using the ground-truth HDR cumulative histogram,
and (d) ground-truth HDR brightness image. (c) and (d) are the
tone-mapped brightness images.

the HDR brightness value. During the matching algorithm,
a smooth intensity mapping function and cubic hermite poly-
nomial fitting were used to prevent artifacts caused by signifi-
cant brightness value changes [35]. Finally, a HDR brightness
image can be obtained by applying this process to all pixels
of the LDR image.

In Figure 6(a), the slope of the CDF in the LDR image
increases drastically at values of 90-100, which means that
several pixels are gathered to that value. Therefore, the LDR
image in Figure 6(b) looks as though the bright regions are
clipped to a single value. However, it does not clip all the
values in the bright region to 100 but tightly compresses
them. Because the area is so tightly saturated, it appears to
be clipped, which is indistinguishable to the eye. On the con-
trary, the HDR image in Figure 6(d) is not saturated, because
the CDF for the HDR image is distributed evenly over the
whole region. In other words, the histogram matching method
is used to spread the brightness of the LDR image, which is
densely populated. In Figures 6(c), an example of HDR image
generation from an LDR image by the histogram matching
technique is shown. If the ground-truth HDR cumulative his-
togram is perfectly estimated, the LDR image (b) is success-
fully converted into the HDR image (c) with no noticeable
difference between it and the ground-truth HDR image (d).
This example suggests that good-quality HDR images can be
generated using the histogram matching technique if HDR
cumulative histograms can be estimated effectively through
our deep learning neural network.
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G. COLOR DIFFERENCE LEARNING ARCHITECTURE

In Figure 3, the L* difference between the LDR image and
the HDR image is significantly larger, but there are also
differences between the chromatic components a* and b*.
Even if the HDR brightness may be perfectly predicted by
the previous process, if the chromatic components are part
of the LDR image, the ground-truth HDR color will not be
represented. Figure 7(c) is the estimated HDR image com-
bining L* of the ground-truth HDR image and a* and b*
of the LDR image. There is a noticeable color difference
between the estimated and the ground-truth HDR images.
Therefore, our model is required to learn color as well as
brightness. We designed the learning architecture to estimate
the color of HDR images from the color of LDR images,
as shown in Figure 8. This network structure is based on
U-net structures [36]. It is a structure that learns not only
high-level features but also low-level features using the 2 x 2
max pooling and up-sampling layer. The missing information
after up-sampling is compensated by skip connection and
concat. The network learns local color information using the
3 x 3 convolution layer, and the rectified linear unit (ReLU)

FIGURE 7. Necessity of color learning in HDR image estimation:

(a) LDR image, (b) ground-truth HDR image, and (c) estimated HDR image
combining L* of the ground-truth HDR image and a* and b* of the LDR
image. Even though the brightness image is the same as that of the
ground-truth HDR image, the color appearance is different.

(b) and (c) are the tone-mapped images.

N

2
Pl
P

NN
TN NN

Il

32X32x512

128x128x128

64X64X256

e

2x2 Max Pooling

LDR Chromatic

256X256%64

Estimated Brightness

16x16x1024
AN L N

Estimated Brightness
Estimated Chromatic

y

== 3x3 Convolution 2x2 Bilinear Upsampling == Skip connection & Concat

FIGURE 8. Color difference learning architecture.
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for the activation function was applied after each layer. As a
loss function, we used a Euclidean distance in the CIEL*a*b*
color space as described in equation (3). It is suitable for color
differences learning due to its high correlation with the human
color perception [37].

Losscotor = 3\ (L — LEY + (@l — at) + (b, — b
3)

where G is the ground-truth image and E is the estimated
image. The total number of convolution layers was 27 and that
of feature maps starts at 64 and doubles each time through the
pooling layer, resulting in 1024 feature maps at the rightmost
layer. The total number of parameters of the color difference
learning is 47,049,155. The initial learning rate was 5 x 1073
and the rest of learning factors were implemented in the
same environment as cumulative histogram learning. The
total training time was 120 minutes and the test time for an
image with 1024 x 1024 resolution took 0.21 seconds in the
color difference learning model.

IV. RESULTS

A. CUMULATIVE HISTOGRAM LEARNING

In Figure 9, the test error graph of the trained model shows the
effect of transfer learning. It shows (a) a model trained with
450 LDR and true HDR pair images, (b) a model trained with
8000 LDR and pseudo-HDR pair images, and (c) a model
trained with 450 LDR and true HDR pair images from pre-
trained weights on 8000 LDR and pseudo-HDR pair images.
All cases were tested with 450 LDR and true HDR pair
images with 5-fold cross-validation [22]. Among the three
models, the test loss of (c) using transfer learning was the
lowest. This allowed us to confirm that transfer learning using
weights pretrained with pseudo-HDR images with similar
features is more effective. For transfer learning, it is common
to use a smaller learning rate in order not to distort well-tuned
weights too quickly and too much. We used a learning rate of
1x 10_6, which is 1/10 of the initial learning rate. Therefore,
the fluctuation in the error decreased from the point where
transfer learning began.

@ ® ©

02 016

Transfer learning
Starting point

Test Loss

Test Loss
Test Loss

o 50 100 150 200 ° 200 400 600 200 400 600 800 1000

Epoch Epoch Epoch

FIGURE 9. Effect of transfer learning: (a) model trained with LDR and true
HDR pair images, (b) model trained with LDR and pseudo-HDR pair
images, and (c) model trained with transfer learning.

The accuracy of the cumulative histogram learning model
was calculated between the CDF estimated by our deep
learning model and the ground-truth CDF using three simi-
larity evaluation metrics: Mean squared difference similarity
(MSD) [38], Cosine similarity [38], and Pearson similar-
ity [38]. Before calculating the accuracy of the proposed CDF
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learning model, it is necessary to calculate the accuracy of the
pre-trained model since the pre-trained performance affects
transfer learning. The three metric results of the pre-trained
model were 99.95%, 99.85% and 99.97%, respectively. These
scores mean that the pre-trained model is almost perfectly
trained. Table 1 shows the accuracy of the three models used
in Figure 9. When using transfer learning, the similarities
with the ground-truth CDF were scored the highest. This
result is identical to the test loss result in Figure 9, which
shows that the proposed model almost perfectly estimates the
CDF of the true HDR image. The p-value calculated by the

TABLE 1. Accuracy results of the three models calculated by the similarity
evaluation metrics.

Trained with Trained with Transfer
LDR &true HDR ~ LDR & pseudo-HDR learning
MSD
o 98.76% 99.21% 99.85%
Similarity
Cosine
95.98% 98.78% 99.49%
Similarity
Pearson
o 99.20% 99.43% 99.91%
Similarity

0 20 40 60 80 100 0 20 40 60 80 100
Brightness Brightness

0 20 40 60 80 100 0 20 40 60 80 100
Brightness Brightness
1
08
%06
Q
)
04
0.2
0
0 20 40 60 80 100 0 20 40 60 80 100
Brightness Brightness

===LDR =—=HDR = Proposed

FIGURE 10. Estimates of HDR cumulative histograms from single LDR
histograms. The estimates (blue lines) follow the patterns of ground-truth
(orange lines) quite well even though there is a large difference between
the LDR and the ground-truth HDR cumulative histograms.
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paired z-test [39] for all similarity metrics was less than 0.05,
which demonstrated the statistical significance improvement
between the models.

In Figure 10, examples of the estimates of the HDR cumu-
lative histogram from a single LDR cumulative histogram
obtained using the proposed trained deep learning model
are shown. Green lines represent the LDR cumulative his-
tograms. It can be seen that the characteristics of the cumu-
lative histograms are diverse for different individual images
in terms of shape, local slopes, curvature, onset, endset,
etc. Their ground-truth HDR counterparts (orange lines) also
show diverse characteristics. Furthermore, the relationships
between the LDR and HDR cumulative histograms are com-
plicated and vary considerably for each case; no fixed trans-
fer function can be estimated using classical mathematical
models. Nevertheless, our trained deep learning model was
able to effectively estimate the ground-truth HDR cumulative
histograms, as shown by the blue lines. In these examples,
the estimates (blue lines) follow the patterns of ground-truth
(orange lines) quite well even though there are large differ-
ences between the LDR and the ground-truth HDR cumula-
tive histograms.

B. HDR BRIGHTNESS IMAGES USING HISTOGRAM
MATCHING

In Figure 11, examples of the estimated HDR brightness
images using the histogram matching technique with the

Our HDR estimate

UL -
l ﬂ
EMl

20 40 60 80 100
Brightness

LDR——HDR —— Proposed

LDR Ground-truth HDR

20 40 60 80 1
Brightness

8

Brighiness

20 40 60 80 100
Brightness

20 40 60 80 100
Brightness

FIGURE 11. Estimates of HDR brightness images in comparison with the
LDR and ground-truth HDR brightness images. Ground-truth HDR and our
HDR estimate are the tone-mapped brightness images.
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LDR Ground-truth HDR ~ Our HDR estimate

LDR=—HDR = Proposed

FIGURE 12. Final color HDR image estimates in comparison with LDR and
ground-truth HDR images. The dark and bright areas with low visibility in
the LDR images were effectively converted into HDR images with
improved visibility and local contrasts. All the HDR images are tone
mapped.

inferred HDR cumulative histograms are shown. Global and
local contrasts of the estimated HDR images are well matched
with the ground-truth HDR brightness images, which are
quite different from the LDR brightness images. The accuracy
of the brightness images estimated by histogram matching
was calculated by the quantitative evaluation metric between
it and the HDR brightness images, which are ground-truth.
The root mean squared error (RMSE), peak signal-to-noise
ratio (PSNR), and structural similarity (SSIM) of the 450 test
brightness images estimated by histogram matching scored
2.99, 31.47 and 0.974, respectively. Since RMSE -calcu-
lates the Euclidean distance between two images, a score
of 2.99 in the brightness image with a range of [0-100] is
a very small difference. And, the PSNR score above 30 is
considered that the difference between two images is invisible
to the human eye [40], and the SSIM score above 0.9 is
considered to be almost identical between two images [41].
Therefore, the quantitative evaluation results show that
brightness images through histogram matching successfully
estimate ground-truth HDR brightness images.

Jang et al. [34] also experimented with image-to-image
learning on brightness images. However, the characteristic of
the LDR-HDR pair image was only the change of dynamic
range, not the change of structure information in the image.
Therefore, image-to-image learning is inefficient because the
model also learns the structure information in the image.
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LDR Ground-truth HDR ~ Our HDR estimate

LDR = HDR = Proposed

FIGURE 13. The results from other types of data not used for training. All
the HDR images are tone mapped.

The RMSE, PSNR, SSIM of the 450 test brightness images
estimated by image-to-image learning scored 4.27, 28.94 and
0.934, respectively. This suggests that cumulative histogram
learning, which focuses on brightness difference learning,
is more effective. In addition, because cumulative histogram
learning is one dimensional, the training time is also signifi-
cantly shorter than for image-to-image learning, which is two
dimensional.

C. COLOR DIFFERENCE LEARNING

The CIEL*a*b* color space images obtained through color
difference learning are converted into RGB color space
images to obtain the final HDR images. Figure 12 shows the
LDR images (first column), the ground-truth HDR images
(second column), the final estimated HDR images (third
column), and the brightness cumulative histogram of the
three images (fourth column). The dark and bright areas
with low visibility in LDR images were effectively converted
into their HDR counterparts with improved visibility and
local contrasts. Furthermore, there is no noticeable difference
in color or brightness between our HDR estimates and the
ground-truth HDR images.

In order to verify general application of our proposed
method, we further tested the different types of data not
used for training. A total of 120 data were obtained from
Eilertsen [17], Fairchild [42], HDR-Eye [43]. Eilertsen pro-
vided LDR and HDR pair images collected from var-
ious sources. And Fairchild dataset were generated by
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(g) Proposed

(h) Ground-truth HDR

FIGURE 14. Comparison of HDR images generated using the proposed method and other iTMOs. Columns (a) and (h) are LDR and the corresponding
ground-truth HDR images, and (b)—(g) are the HDR estimates of Akyiiz, Huo, Eilertsen, Endo, Marnerides, and our proposed method, respectively. All

the HDR images are tone mapped.

synthesizing nine LDR images with different exposures taken
by a Nikon D2x camera and HDR-Eye dataset was gen-
erated by several cameras, including Sony DSCRX100 II,
Sony NEX-5N, and Sony alpha 6000, in the same process
as Fairchild. Figure 13 shows that our proposed method well
estimated HDR images for the different types of data not used
for training. The slight difference in the brightness cumulative
histogram and color between the estimated HDR images and
the ground-truth HDR images is due to the difference in
camera type, settings, and environment.

D. COMPARISON WITH EXISTING ITMO METHODS

Figure 14 compares the HDR images generated by our
proposed method and other existing iTMO methods.
Column (a) and (h) are LDR and the corresponding
ground-truth HDR images, and (b)—(g) are the HDR estimates
of Akyiiz et al. [7], Huo et al. [13], Eilertsen et al. [17],
Endo et al. [18], Marnerides et al. [20], and our proposed
method, respectively.

VOLUME 8, 2020

In the magnified versions of the first image (second row),
the bright region is saturated in the LDR image, making it
difficult to distinguish. In ground-truth HDR image, however,
this region can clearly be distinguished. Various iTMO meth-
ods attempt to distinguish saturated regions by expanding
the dynamic range. Since Akyiiz’s method is a simple linear
expanding method, the bright region is excessively brighter,
making it more difficult to distinguish. Huo and Eilertsen’s
estimated HDR images adjust the contrast for overly bright
regions; however, the structure is still indistinguishable.
Endo and Marnerides’s estimated HDR images represent the
structure distinguishably. However, artifacts occur in overly
bright areas. They also occur in the right side light source
of the whole image. In contrast, the estimated HDR image
of our proposed method expands the dynamic range like a
ground-truth HDR image. Structure information that was not
distinguished in the LDR image can be identified, because the
difference was effectively expanded through cumulative his-
togram learning in the region where the intensity difference
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HDR-VDP PU-SSIM-Y PU-MS-SSIM-Y

Akyuz Huo Eilertsen

Endo

PU-PSNR-Y PU-RMSE-Y deltaE1976

Marnerides Proposed

FIGURE 15. Quantitative comparison of the performance of several iTMOs. Six different objective evaluation metrics are calculated on HDR estimates
compared with the ground-truth HDR images. All these metrics confirm that our proposed method outperforms the existing iTMOs in estimating the

ground-truth HDR images.

was small. In the magnified versions of the second image
(fourth row), the sunlight on the window is saturated and
white in the LDR image. In the ground-truth HDR image,
however, this region becomes distinguishable and displays
a red hue. The HDR images estimated using the conven-
tional methods do not estimate colors perfectly even though
they expand the dynamic range in this region. In contrast,
the estimated HDR image using our proposed method not
only makes the shadows of the building more distinct, but also
makes the color of sunlight look like that of the ground-truth
HDR. This is because our proposed method learns color infor-
mation separately through color difference learning, unlike
other iTMOs. Finally, in the magnified versions of the third
image (six row), the cloud appears to be saturated in the LDR
image. In ground-truth HDR image, however, the cloud shape
is visible. Akyiiz, Huo, Eilertsen, and Endo’s estimated HDR
images not represent the cloud shape. Marnerides’ estimated
HDR image produces a rough cloud shape but is not clearly
distinguishable. In contrast, the HDR image estimated using
our proposed method distinguishes clouds from sunlight, thus
resembling the cloud shape of the ground-truth HDR image.
Overall, our HDR estimates are the most comparable to the
ground-truth HDR image in both the global and local sense.

E. QUANTITATIVE COMPARISON WITH OBJECTIVE
EVALUATION METRICS

The performance of our proposed method and the other
iTMOs (Akyiiz et al. [7], Huo et al. [13], Eilertsen et al. [17],
Endo et al. [18], Marnerideset al. [20]) are compared based
on the following six different objective evaluation metrics:
HDR-VDP-2.2 [44], [45], PU-SSIM(Y) [46], [47], PU-MS-
SSIM [48], PU-PSNR, PU-RMSE, and deltaE1976 [37].
These metrics are demonstrated to be well suited for HDR
image evaluation [49], [50]. The descriptions for these met-
rics are provided in Appendix B. The quantitative evaluation
metrics were calculated and averaged on a total of 570 images
by adding the 120 data with varying types as well as the exist-
ing 450 data of ours. Figure 15 and Table 2 show the scores
of HDR-VDP-2.2, PU-SSIM, PU-MS-SSIM, PU-PSNR,
PU-RMSE, and deltaE1976. All these metrics confirm that
our proposed method outperforms the existing iTMOs in
estimating the ground-truth HDR images. This is espe-
cially apparent in deltaE1976, a metric for evaluating color

38564

TABLE 2. Quantitative evaluation of several iTMOs using HDR-specific
evaluation metrics for a total of 570 images.

Akyuz Huo Eilertsen Endo Marnerides Proposed
HDR-VDP-
44.03 4731 49.11 49.67 50.19 52.18
22
PU-
0.53 0.69 0.89 0.90 0.92 0.98
SSIM-Y
PU-MS-
0.49 0.64 0.83 0.86 0.87 0.95
SSIM-Y
PU-
25.84  28.82 34.09 32.68 35.96 45.39
PSNR-Y
PU-
3038 2246 13.12 1491 10.60 4.43
RMSE-Y
deltaE1976 2446  18.20 11.17 12.85 9.04 4.29

difference as a Euclidean distance in the CIEL*a*b* color
space. This is because deltaE1976 was used as the loss
function in our proposed color difference learning method.
In other words, compared with the conventional iTMOs,
which only expand the dynamic range, the proposed method
also considers the change of color.

V. CONCLUSION AND FUTURE WORK

HDR image estimation from a single LDR image is challeng-
ing task. Several previous iTMOs have focused on creating
either linearly or nonlinearly expanded dynamic range images
based on mathematical and perceptual models, but they have
failed to produce good estimates of the ground-truth HDR
images. Our deep-learning-based iTMO can be an effective
solution to this challenging task. By learning the complicated
relationship between various LDR and HDR images, we were
able to produce a good HDR estimate from an arbitrary
single LDR image. The objective evaluations confirm that
our proposed method is superior to other existing iTMOs that
are based on various mathematical models in estimating the
ground-truth HDR images.

The main advantage of the proposed method over the
existing mathematical-model-based iTMOs is that our deep-
learning-based iTMO can produce a good estimate of the
ground-truth HDR image itself and not just create an arbitrary
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HDR-like image. Conventional iTMOs have been concerned
mostly with how to expand Y, the absolute luminance value.
They proposed a method of setting the maximum luminance
and expanding the luminance accordingly. However, because
the maximum luminance to be expanded for each image is
different, it is dangerous to handle a static transform function
for all images. Therefore, our model generates a transform
function appropriately according to the image, and this is
the greatest difference from the conventional iTMOs, which
apply the static function equally to all images.

The main difference from conventional iTMOs is that our
model uses cumulative histogram-based learning, not image-
based learning. In other words, the dynamic range, which is
the largest difference between LDR and HDR images, was
trained with a one-dimensional cumulative histogram instead
of a two-dimensional image. Through dimension reduction,
the training time was shortened and the accuracy of learning
was improved. Another difference from conventional iTMOs
is that our model considers the color relationship of the
LDR-HDR image. Even if the HDR brightness may have
been perfectly predicted in the previous process, if the chro-
matic components are components of the LDR image, the
ground-truth HDR color will not be represented (as demon-
strated in Figure 7). Therefore, we performed color learning
using deltaE1976, a color difference metric that considers
human color recognition, as a loss function. By performing
one more specialized learning process on color, it shows
much similar color to that of the ground-truth HDR image
than the conventional iTMOs.

Our proposed method has a limitation in restoring perfectly
lost information. The 8-bit LDR images are so saturated that
the intensity is tightly compressed, resulting in clipping or
quantization. These regions have small intensity differences
that are indistinguishable by the eye, or they are clipped to
a single intensity, completely losing the original informa-
tion. Our method uses histogram matching in the process
of making the estimated HDR brightness image using the
learned cumulative histogram. However, because histogram
matching involves one-to-one mapping for each pixel in
the LDR image, it is not possible to restore the perfectly
clipped region, although it works effectively to distinguish
areas of small intensity differences. We recognized the lim-
itations of histogram matching and designed the method to
learn local information through a 3 x 3 convolution layer
when processing additional color difference learning in the
two-dimensional image domain. In addition, our model learns
some clipped regions through pooling and up-sampling using
a U-net structure. However, this may be insufficient because
it does not intensively learn only clipped areas. Therefore,
the next study will investigate how to estimate clipped regions
without artifacts to improve our deep-learning-based iTMO.
Another limitation is in noise handling. Recently, many
papers have been proposed to study the noise amplifica-
tion that occurs when dealing with low-light images [51].
However, our proposed method does not currently focus on
noise reduction. If the LDR image itself is noisy, histogram
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matching does not reduce the noise. Also, since the proposed
deep learning model is not specialized for noise reduction,
it will not completely reduce noise. To solve this problem,
we will study the network structure that additionally con-
nects the convolution layer that has been specialized in noise
reduction. Finally, the HDR used to train the model is an
image merged from LDR images with EVs of —2, 0, and 2.
Therefore, the estimated HDR generated by the trained model
only represents the dynamic range of HDR merged into LDR
images with —2, 0, and 2 EVs. The next step is to build
a model that generates HDR images with a wider dynamic
range by training with the HDR data representing a wider
dynamic range.

APPENDIX
A. CIEL*a*b* COLOR SPACE CONVERSION
X 04124 03576 0.18057] [ R
Y |=|02126 07152 00722 || G| @@
z 0.0193 0.1192 09505 | | B
L* = 116f (1) ~16
Yy

= () (7))

Y Z
b* =200 el — 5
(%)) ®
P £ S
=1 ¢ where § = —
— + — otherwise 29
382 29

B. OBJECTIVE EVALUATION METRICS
1. HDR-VPD-2.2 [44], [45]

1 F O 1 1
Ohdrvdp = m Z wa log (7 ZD[% [f ol () + 5)
f=1o0=1 i=1
(7N

i pixel index

f: spatial frequency (1 to F)

o: orientation (1 to O)

Dy :  noise-normalized difference between the fth and
oth of the steerable pyramid for the reference and
test images

e small constant (10_5) to avoid singularities when
Dy, is close to 0
I: total number of pixels

wy : vector of per-band pooling weights
2. PU ENCODING [46]

evi(L, Ly) = (max[CSF(Lq, \)MA(L — LaDD™"  (8)
t(L) = cvi(L, max (L, Ly—min)) )

fi = fisr (A +1(fim1)
wheref: L' — L, ie[2---N] (10)
PU:L - L (11)
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We used the values of f as a lookup table and found the nearest
index i for a given luminance value L.

cvi contrast versus intensity

CSF: contrast sensitivity function

L, : adapting luminance

L: background luminance

MA: estimate of the loss of sensitivity

X: corresponds to all the parameters (such as

spatial frequency, orientation, and stimuli size)

Lo_min - all luminance levels above this value
t: final estimates of the detection thresholds
i luma value
fi: gives the luminance value associated with a

particular i

3. SSIM [47]
2uxy + C1) (204 + Co
Qssim = Qitsity + €1) Ry + C2) (12)
(M% +u3+ C1) (crx2 +02+ C2)

Wy, y:  (mean intensity of image x,y (luminance term)
ox, 0y . standard deviation of image X,y (contrast term)
Oy : ﬁ SV — ) (i — 1y)(structural term)
C1, C :  small constant to be stable (empirical value)

4. MS-SSIM [48]

0 _ % SSIM( ) (13)
msssim = 3¢ L Xjs Vj
]=
Calculate the mean SSIM index for the whole image.
5. PSNR

max (E)?
ey S YV G G ) — EG)P

stnr = 1010g10

(14)
G: ground-truth image
E: estimated image
i,j: pixel index
max(E) : maximum possible pixel value of the
estimated image
6. RMSE
1 M N
Ormse = | 77— Z Z (GG, j) —EG, )P (15)
i
G :  ground-truth image
E :  estimated image

i,j: pixel index

7. deltaE1976 [37]

Qdeliak 1976 = \/ (L —Lp) + (af; — ap)* + (0 — by
(16)

Calculate in the CIEL*a*b* color space.
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G: ground-truth image
E: estimated image

ACKNOWLEDGMENT
The authors would like to thank Inyong Park for discussion
and helpful comments on this article.

REFERENCES

[1] T. Kunkel and E. Reinhard, “A reassessment of the simultaneous dynamic
range of the human visual system,” in Proc. 7th Symp. Appl. Perception
Graph. Vis. (APGV), 2010, pp. 17-24.

[2] S. Mann and R. W. Picard, “On being ‘undigital’ with digital cameras:
Extending dynamic range by combining differently exposed pictures,” in
Proc. IST, May 1995, pp. 442-448.

[3] A. Deepa and S. Muthumariammal, “An overview of ghost artifact in
HDRL” SIJ Trans. Comput. Sci. Eng. Appl., vol. 2, no. 1, pp. 1-6,
Feb. 2014.

[4] E. A. Khan, A.O. Akyuz, and E. Reinhard, “Ghost removal in high

dynamic range images,” in Proc. Int. Conf. Image Process., Oct. 2006,

pp. 2005-2008.

S. Hajisharif, J. Kronander, and J. Unger, “Adaptive duallSO HDR recon-

struction,” EURASIP J. Image Video Process., vol. 2015, no. 1, p. 41,

Dec. 2015.

A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia, “Convo-

lutional sparse coding for high dynamic range imaging,” Comput. Graph.

Forum, vol. 35, no. 2, pp. 153-163, May 2016.

[7] A. O. Akyiiz, R. Fleming, B. E. Riecke, E. Reinhard, and H. H. Biilthoff,

“Do HDR displays support LDR content?: A psychophysical evaluation,”

ACM Trans. Graph., vol. 26, no. 3, p. 38, 2007.

L. Meylan, S. Daly, and S. Siisstrunk, “The reproduction of specular high-

lights on high dynamic range displays,” in Proc. Color Imag. Conf., 2006,

vol. 2006, no. 1, pp. 333-338.

B. Masia, S. Agustin, R. W. Fleming, O. Sorkine, and D. Gutierrez, “Eval-

uation of reverse tone mapping through varying exposure conditions,”

ACM Trans. Graph., vol. 28, no. 5, pp. 1-8, Dec. 2009.

[10] B. Masia, R. Fleming, O. Sorkine, and D. Gutierrez, *‘Selective reverse
tone mapping,” in Proc. Congreso Espanol de Inf. Grafical Eurograph.,
2010, pp. 1-10.

[11] F. Banterle, P. Ledda, K. Debattista, and A. Chalmers, “‘Inverse tone map-
ping,” in Proc. 4th Int. Conf. Comput. Graph. Interact. Techn. Australasia
Southeast Asia, 2006, pp. 349-356.

[12] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, ‘‘Photographic tone
reproduction for digital images,” ACM Trans. Graph., vol. 21, no. 3,
pp. 267-276, Jul. 2002.

[13] Y. Huo, F. Yang, L. Dong, and V. Brost, “Physiological inverse tone map-
ping based on retina response,” Vis. Comput., vol. 30, no. 5, pp. 507-517,
Sep. 2013.

[14] R. Shapley and C. Enroth-Cugell, ““Chapter 9 visual adaptation and retinal
gain controls,” Progr. Retinal Res., vol. 3, pp. 263-346, Jan. 1984.

[15] J. Zhang and J.-F. Lalonde, “Learning high dynamic range from outdoor
panoramas,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 4519-4528.

[16] N.K. Kalantari and R. Ramamoorthi, ‘“Deep high dynamic range imaging
of dynamic scenes,” ACM Trans. Graph., vol. 36, no. 4, pp. 144:1-144:12,
2017.

[17] G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, “HDR
image reconstruction from a single exposure using deep CNNs,”
ACM Trans. Graph., vol. 36, no. 6, p. 178, 2017. [Online]. Available:
http://github.com/gabrieleilertsen/hdrcnn

[18] Y. Endo, Y. Kanamori, and J. Mitani, “‘Deep reverse tone mapping,” ACM
Trans. Graph., vol. 36, no. 6, pp. 177:1-177:10, Nov. 2017.

[19] S. Lee, G.H. An, and S.-J. Kang, “Deep chain HDRI: Reconstructing a
high dynamic range image from a single low dynamic range image,” IEEE
Access, vol. 6, pp. 49913-49924, 2018.

[20] D. Marnerides, T.Bashford-Rogers, J.Hatchett, and K. Debattista,
“ExpandNet: A deep convolutional neural network for high dynamic
range expansion from low dynamic range content,” Comput. Graph.
Forum, vol. 37, no. 2, pp.37-49, May 2018. [Online]. Available:
https://github.com/dmarnerides/hdr-expandnet

[5

—

[6

—

[8

—

9

—

VOLUME 8, 2020



H. Jang et al.: Dynamic Range Expansion Using Cumulative Histogram Learning for HDR Image Generation

IEEE Access

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

P. E. Debevec and J. Malik, “Recovering high dynamic range radi-
ance maps from photographs,” in Proc. ACM SIGGRAPH Classes (SIG-
GRAPH), 2008, p. 31.

R. Kohavi, “A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,” in Proc. IJCAI, 1995, vol. 14, no. 2,
pp. 1137-1145.

E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and
K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and
Image-Based Lighting. San Mateo, CA, USA: Morgan Kaufmann, 2010.
R. S. Hunter, “Photoelectric color difference meter,” J. Opt. Soc. Amer.,
vol. 48, no. 12, pp. 985-995, Dec. 1958.

H. Khalid, P.Kazemi, L.Perez-Gandarillas, A.Michrafy, J. Szlek,
R. Jachowicz, and A. Mendyk, “Computational intelligence models to
predict porosity of tablets using minimum features,” Drug Des., Develop.
Therapy, vol. 11, pp. 193-202, Jan. 2017.

K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

W. Luo, Y. Li, R. Urtasun, and R. Zemel, ‘“Understanding the effective
receptive field in deep convolutional neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 4898-4906.

F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,”
SIAM J. Numer. Anal., vol. 17, no. 2, pp. 238-246, 1980.

D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “RAISE:
A raw images dataset for digital image forensics,” in Proc. 6th ACM
Multimedia Syst. Conf. (MMSys), 2015, pp. 219-224.

M. Reichmann. Understanding Raw Files Explained. [Online]. Available:
http://www.luminouslandscape.com/tutorials/understandingseries/uraw-
files.shtml

M. D. Grossberg and S. K. Nayar, “What is the space of camera response
functions?”” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., vol. 2, Jun. 2003, p. I1-602.

T.-H. Wang, C.-W. Chiu, W.-C. Wu, J.-W. Wang, C.-Y. Lin, C.-T. Chiu,
and J.-J. Liou, ‘“‘Pseudo-Multiple-Exposure-Based tone fusion with local
region adjustment,” IEEE Trans. Multimedia, vol. 17, no. 4, pp. 470484,
Apr. 2015.

H. Jang, K. Bang, J. Jang, and D. Hwang, “Inverse tone mapping operator
using sequential deep neural networks based on the human visual system,”
IEEE Access, vol. 6, pp. 52058-52072, 2018.

R. C. Gonzalez and R. E. Woods, ““Object recognition,” in Digital Image
Processing, 3rd ed. London, U.K.: Pearson, 2008, pp. 861-909.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent, 2015, pp. 234-241.

A. R. Robertson, “The CIE 1976 color-difference formulae,” Color Res.
Appl., vol. 2, no. 1, pp. 7-11, Jun. 2014.

H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, ‘A new user similarity model
to improve the accuracy of collaborative filtering,” Knowl.-Based Syst.,
vol. 56, pp. 156-166, Jan. 2014.

J. H. McDonald, Handbook of Biological Statistics. Baltimore, MD, USA:
Sparky House Publishing, 2009.

C.-C. Lee, H.-C. Wu, C.-S.Tsai, and Y.-P. Chu, “Adaptive lossless
steganographic scheme with centralized difference expansion,” Pattern
Recognit., vol. 41, no. 6, pp. 2097-2106, Jun. 2008.

T.-C. Chang, S. S.-D. Xu, and S.-F. Su, “SSIM-based quality-on-demand
energy-saving schemes for OLED displays,” IEEE Trans. Syst., Man,
Cybern. Syst., vol. 46, no. 5, pp. 623-635, May 2016.

M. Fairchild. (2008). Fairchild’s HDR Photographic Survey. [Online].
Available: http://rit-mcsl.org/fairchild/HDR.html

P. Korshunov, T. Hanhart, and P. A. Ebrahimi. (2015). EPFL’s Dataset of
HDR Images. [Online]. Available: http://mmspg.epfl.ch/hdr-eye

R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “HDR-VDP-2:
A calibrated visual metric for visibility and quality predictions in all
luminance conditions,” ACM Trans. Graph., vol. 30, no. 4, p. 40, 2011.
M. Narwaria, R. K. Mantiuk, M. P. Da Silva, and P. Le Callet, ““HDR-
VDP-2.2: A calibrated method for objective quality prediction of high-
dynamic range and standard images,” J. Electron. Imag., vol. 24, no. 1,
Jan. 2015, Art. no. 010501.

T. O. Aydin, R. Mantiuk, and H. P. Seidel, “Extending quality metrics
to full luminance range images,” Proc. SPIE, vol. 6806, p.68060B,
Mar. 2008.

VOLUME 8, 2020

(47]

(48]

(49]

[50]

[51]

Z.Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal
Process. Lett., vol. 9, no. 3, pp. 81-84, Mar. 2002.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural simi-
larity for image quality assessment,” in Proc. 7th Asilomar Conf. Signals,
Syst. Comput., vol. 2, 2003, pp. 1398-1402.

P. Hanhart, M. V. Bernardo, M. Pereira, A.M. G. Pinheiro, and
T. Ebrahimi, “Benchmarking of objective quality metrics for HDR
image quality assessment,” EURASIP J. Image Video Process., vol. 2015,
no. 1, p. 39, Dec. 2015.

E. Zerman, G. Valenzise, and F. Dufaux, “An extensive performance eval-
uation of full-reference HDR image quality metrics,” Qual. User Exper.,
vol. 2, no. 1, p. 5, Apr. 2017.

X. Guo, “LIME: A method for low-light image enhancement,” in Proc.
24th ACM Int. Conf. Multimedia, 2016, pp. 87-91.

HANBYOL JANG received the B.S. degree in
electrical and electronic engineering from Yonsei
University, Seoul, South Korea, in 2016, where he
is currently pursuing the Ph.D. degree in electri-
cal and electronic engineering. His research inter-
ests include image processing, computer vision,
machine learning, and medical imaging.

KIHUN BANG received the B.S. and M.S. degrees
in electrical engineering from Yonsei University,
Seoul, South Korea, in 2016 and 2018, respec-
tively. His research interests include image pro-
cessing, computer vision, machine learning, and
medical imaging.

JINSEONG JANG received the B.S. degree in
electrical and electronic engineering from Yonsei
University, Seoul, South Korea, in 2013, where he
is currently pursuing the Ph.D. degree in electrical
and electronic engineering. His research interests
include medical image processing, machine learn-
ing, and image quality assessment.

DOSIK HWANG received the B.S. and M.S.
degrees in electrical engineering from Yonsei Uni-
versity, Seoul, South Korea, in 1997 and 1999,
respectively, and the Ph.D. degree in bioengineer-
ing from The University of Utah, Salt Lake City,
UT, USA, in 2006. He is currently a Professor at
Yonsei University. His research interests include
deep-learning based image processing, medical
imaging, and tomographic reconstruction.

38567



