
Neural Networks 134 (2021) 131–142

h
s
t
t
s
w
b

(
c
d

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Deep-learned spike representations and sorting via an ensemble of
auto-encoders
Junsik Eom a,1, In Yong Park a,1, Sewon Kim a,1, Hanbyol Jang a,1, Sanggeon Park b,c,d,e,
Yeowool Huh b,c, Dosik Hwang a,∗

a School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
b Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea
c Translational Brain Research Center, Catholic Kwandong University, International St. Mary’s Hospital, Incheon 22711, Republic of Korea
d Department of Neuroscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
e Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

a r t i c l e i n f o

Article history:
Received 8 June 2020
Received in revised form 1 October 2020
Accepted 16 November 2020
Available online 27 November 2020

Keywords:
Unsupervised spike sorting
Deep learning-based auto-encoder
Feature extraction
Clustering

a b s t r a c t

Spike sorting refers to the technique of detecting signals generated by single neurons from multi-
neuron recordings and is a valuable tool for analyzing the relationships between individual neuronal
activity patterns and specific behaviors. Since the precision of spike sorting affects all subsequent
analyses, sorting accuracy is critical. Many semi-automatic to fully-automatic spike sorting algorithms
have been developed. However, due to unsatisfactory classification accuracy, manual sorting is
preferred by investigators despite the intensive time and labor costs. Thus, there still is a strong need
for fully automatic spike sorting methods with high accuracy. Various machine learning algorithms
have been developed for feature extraction but have yet to show sufficient accuracy for spike sorting.
Here we describe a deep learning-based method for extracting features from spike signals using an
ensemble of auto-encoders, each with a distinct architecture for distinguishing signals at different
levels of resolution. By utilizing ensemble of auto-encoder ensemble, where shallow networks better
represent overall signal structure and deep networks better represent signal details, extraction of high-
dimensional representative features for improved spike sorting performance is achieved. The model
was evaluated on publicly available simulated datasets and single-channel and 4-channel tetrode in
vivo datasets. Our model not only classified single-channel spikes with varying degrees of feature
similarities and signal to noise levels with higher accuracy, but also more precisely determined the
number of source neurons compared to other machine learning methods. The model also demonstrated
greater overall accuracy for spike sorting 4-channel tetrode recordings compared to single-channel
recordings.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Extracellular single-unit recording enables investigation of
ow the activity patterns of individual neurons contribute to
pecific behaviors. Extracellular recordings, however, often con-
ain signals (action potentials or spikes) from multiple neurons
hat first must be attributed to individual neurons (referred to as
pike sorting). Spike sorting is based primarily on spike shapes,
hich differ according to distance from the recording electrode,
y the position relative to other neurons, and among different

∗ Corresponding author.
E-mail addresses: junsik424@yonsei.ac.kr (J. Eom), inyong@yonsei.ac.kr

I.Y. Park), sewon.kim@yonsei.ac.kr (S. Kim), hanstar4@yonsei.ac.kr (H. Jang),
halspark.korea@gmail.com (S. Park), huh06@cku.ac.kr (Y. Huh),
osik.hwang@yonsei.ac.kr (D. Hwang).
1 Equally contributing authors.
ttps://doi.org/10.1016/j.neunet.2020.11.009
893-6080/© 2020 Elsevier Ltd. All rights reserved.
source neurons. For manual spike sorting, spike shape features
such as peak amplitude, width, and after-hyperpolarization are
most frequently considered (Guenther et al., 2009; Lewicki, 1998).
However, such manual spike sorting requires much time and
effort, and in cases where spike shapes are similar, classification
may be difficult even for well-trained neuroscientists (Harris,
Henze, Csicsvari, Hirase, & Buzsaki, 2000). Therefore, many au-
tomatic spike sorting methods have been developed to increase
performance. In general, automatic spike sorting is performed
in three steps. (1) spike detection, (2) feature extraction, and
(3) clustering to assigned labels (i.e., specific individual neurons).
For spike detection, analogue neural signals are amplified, band-
pass filtered (usually at 300–6000 Hz), and digitized using an
analog-to-digital converter (ADC). Spikes at different time events
are then selected by setting a threshold and aligned by the spike
occurrence times (Nenadic & Burdick, 2004). Although it is possi-
ble to directly use raw data features, using feature extraction to

https://doi.org/10.1016/j.neunet.2020.11.009
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.11.009&domain=pdf
mailto:junsik424@yonsei.ac.kr
mailto:inyong@yonsei.ac.kr
mailto:sewon.kim@yonsei.ac.kr
mailto:hanstar4@yonsei.ac.kr
mailto:chalspark.korea@gmail.com
mailto:huh06@cku.ac.kr
mailto:dosik.hwang@yonsei.ac.kr
https://doi.org/10.1016/j.neunet.2020.11.009

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

l

2

b
f
E
n
d
a
e
l
a
3

Fig. 1. Overall flow of the ensemble auto-encoder spike sorting model. First, spikes are filtered from raw neuronal action potential signals using a voltage threshold.
The spike data are then pre-processed so that voltage difference values are used instead of the raw values as input. An ensemble auto-encoder then performs feature
extraction, yielding latent space values as distinguishing features for sorting. Machine learning-based clustering algorithms are then applied to the extracted features
for spike sorting.
reduce the data into lower feature dimensions greatly improves
spike sorting performance (Gibson, Judy, & Marković, 2011; Wild,
Prekopcsak, Sieger, Novak, & Jech, 2012). Feature extraction al-
gorithms such as principal component analysis (PCA), diffusion
map (DM), self-organizing map (SOM), wavelet transform (WT),
and linear discriminant analysis (LDA) are used to improve spike
sorting performance (Adamos, Kosmidis, & Theophilidis, 2008;
Keshtkaran & Yang, 2017; Nguyen et al., 2015; Quiroga, Nadasdy,
& Ben-Shaul, 2004; Vesanto & Alhoniemi, 2000). However, these
methods are highly sensitive to noise and often fail to extract
meaningful features in cases of high spike shape similarity. There-
fore, a novel method applying an appropriate feature extraction
technique that is both robust to noise and signal similarity is
needed for improved spike sorting. Deep learning-based methods
are an intensive area of investigation for classification of various
physiological signals and image features due to their outstanding
performance. In the current study, we describe an unsupervised
feature extraction model based on deep learning for extracting
discriminative features from spikes. The critical aspect of our
deep learning-based method is that feature extraction is per-
formed by 3 different auto-encoders (AEs). Using this method, we
were able to successfully extract meaningful features even from
signals with high structural similarity and noise (low signal-to-
noise). When these extracted features are processed using various
clustering algorithms such as K-means, Gaussian mixture models
(GMMs), superparamagnetic clustering (SPC), and density-based
spatial clustering of applications with noise (DBSCAN) (Blatt,
Wiseman, & Domany, 1996; Ester, Kriegel, Sander, Xu, et al.,
1996; Likas, Vlassis, & Verbeek, 2003; Reynolds, 2009), it yielded
high classification and cluster number prediction accuracy. To
test model performance, we compared classification and cluster
number prediction accuracy to other machine learning (ML) al-
gorithms on both simulated and in vivo data with various noise
evels and degrees of spike shape similarities.

. Methods

The spike sorting algorithm using deep learning-based ensem-
le AE is illustrated in Fig. 1. The first step is to detect spikes
rom recorded signals by setting an amplitude threshold value.
ach spike data is then pre-processed into gradient values and
ormalized. To obtain the key features from the pre-processed
ata, ensemble AE is then utilized for feature extraction. Finally,
clustering algorithm is applied to the extracted features. To

valuate the performance of the proposed method, two simu-
ated datasets and in vivo datasets were used. Our model takes
pproximately 68.81 s on average for the automatic sorting of

526 spikes in these datasets.

132
2.1. Dataset

We used two simulated datasets to evaluate the clustering
performance of these models. Simulated data is advantageous for
evaluation of spike sorting algorithms as the final output can
be compared to known labels. The first simulated dataset we
used for our study was provided by the University of Leices-
ter and published by Quiroga et al. (2004). It is a wildly used
dataset for spike sorting performance evaluation. The dataset
is composed of 20 subset data with varying spike similarities
and noise levels. Depending on the spike similarity, the subset
data is categorized into 4 difficulty types, named Easy1, Easy2,
Difficult1, and Difficult2. Each difficulty type data contains 4
levels of noise (0.05, 0.10, 0.15, and 0.20) except for Easy1 which
additionally contained cases with more extreme levels of noise
(0.25, 0.30, 0.35, and 0.40). The noise levels were determined by
taking the standard deviation of the voltage trace relative to spike
amplitude. The simulated data were generated at a sampling rate
of 96 kHz and down-sampled to 24 kHz. Each of the 20 data
subsets is composed of 1,440,000 sampling points, and specific
spike times are given to each spike based on ground truth. The
three different spikes have a mean firing rate of 20 Hz with
Poisson distribution of inter-spike intervals, and the refractory
time between action potentials from the same neuron is 2 ms.
We will refer to these records as Dataset1. The second simulated
dataset (Pedreira, Martinez, Ison, & Quiroga, 2012) is composed
of 95 simulated extracellular recordings sampled at 24 kHz. The
data contains various numbers of source neurons ranging from 2
to 10. To further simulate various neuronal numbers, the signals
from the second simulated dataset were recomposed to create
100 subsets with the number of 2, 3, 4, or 5 source neurons.
The resulting 400 subsets are referred to as Dataset2. Both of
the simulated datasets are generated based on recordings from
basal ganglia and neocortex. The in vivo dataset was obtained
from the mouse cortex using a tetrode. Neural activities were
band-pass filtered at 600 Hz to 6 kHz, amplified by 10,000, and
digitized at 30.3 kHz using Digital Lynx (Neuralynx, Bozeman,
MT, USA). Single units were manually sorted using SpikeSort 3D
(Neuralynx) by a trained expert, and cluster quality was inspected
using isolation distance, L-ratio, inter-spike interval in the ISI
histogram (ISI >1 ms), and cross-correlation. For our study, both
single-channel and 4-channel tetrode recordings were used for
evaluation of the proposed spike sorting model (Huh, Bhatt, Jung,
Shin, & Cho, 2012; Huh & Cho, 2013, 2016). The noise level of in
vivo dataset, obtained by the identical method used for simulated
Dataset1, was 0.03.

2.2. Environment

The proposed unsupervised spike sorting algorithm was writ-
ten in Python and implement with Keras using TensorFlow back-
end. Spike sorting is performed using Intel Xeon E5-1620 CPU

with a Nvidia Titan X GPU and 96 GB RAM.

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

u
e
v
C
E
s

v
m

Fig. 2. The deep learning-based ensemble auto-encoder. Input spikes are applied to different sizes of auto-encoder models, and the reconstruction results are shown
at the bottom of each model. The extracted features are shown on the right side, which are concatenated from latent spaces of each models.
s
o
p
v
p
p

2

i
m
w
s
d
f
r
n
a
t
m
U
o
A
t
f
d

w
i

2.3. Data processing

The raw extracellular neural signal was sampled at 24 kHz
sing an ADC and band-pass filtered at 300–6000 Hz for noise
xclusion and DC offset removal. Spikes can be detected using a
ariety of methods (Nenadic & Burdick, 2004; Nguyen, Khosravi,
reighton, & Nahavandi, 2014; Obeid & Wolf, 2004; Wilson &
merson, 2002). In our paper, spike detection was performed by
etting a threshold 4σn (Quiroga et al., 2004) where

σn = median
{

|x|
0.6746

}
(1)

and saved as 32 sampling points (41.6 µs intervals between
sampling points). To avoid misalignment, all spikes were aligned
using their spike times (Quiroga et al., 2004). Input data for the
deep learning model was min–max normalized to a scale of 0 to
1 so that the model was less sensitive to the absolute scale of
features. Furthermore, rather than using the raw action potential
values as input, differential geometry, the gradient in our case,
was used since it is more amenable to signal processing (Manton,
Applebaum, Ikeda, & Le Bihan, 2013). The gradient is obtained
by calculating the normalized voltage difference every 41.6 µs ∗

(v = 1, 2, . . . , 10). The pre-processed data for the deep learning
odel can be explained by the equations

Xv (N, f) =
PN (f + v) − PN (f)

v
(v = 1, 2, . . . , 10)
(k = 32 − v)
(f = 1, 2, . . . , k)

(2)

where N represents the number of spikes in dataset X , f is
the sampling time of each sampling point, and v is the point
133
interval length. An interval value of 41.6 µs ∗ v (v = 1, 2, . . . , 3)
howed higher performance for determining the correct number
f source neurons compared to other sampling point values and
re-processed data with 41.6 µs ∗ v (v = 4, 5, . . . , 10). Using
= 1 resulted in highest performance. Fig. 6a shows that the

erformance increased using the gradients values rather than the
oint values as described in Results section.

.4. Feature extraction through auto-encoder

A deep learning-based AE is an unsupervised tool for learn-
ng data representations utilizing the bottleneck structure of the
odel. It is composed of three major parts: the encoder (θ),
here the input data (spike signals) are reduced to lower dimen-
ions; the latent space (h), i.e., the dimensionally reduced input
ata from the encoder, which its values become the extracted
eatures; and a decoder (φ), where the latent space values are
econstructed back into the original signal. The weights of the
etwork are trained so that the difference between input values
nd output values are minimized for all data. In other words,
he network learns to extract key features from input so that the
odel can best reconstruct the input from the extracted features.
nlike PCA, a linear transformation method that represents data
nly in a lower dimensional hyperplane, our deep learning-based
E method can represent high-dimensional relationships within
he data by expanding dimensions using non-linear activation
unctions before extracting features. The operations of AE are
efined by the equation

θ, φ = argmin∥X − X̂∥
2 (3)

here X is the input data and X̂ is the output data. The encoder
s responsible for reducing the data into lower dimensions while

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

p
2
e

reserving as much information as possible (Kingma & Welling,
013). The encoding input data X is composed of n samples,
ach with m features. When processed, m features are reduced to

the number of nodes in the latent space (h) layer. The encoding
process is described by the equation

h = σ (WX + b) (4)

where σ is a non-linear activation function ReLU , W is the weight
trained by the neural network, and b is the bias vector. The
decoder then takes the dimensionally reduced data (the latent
space values) from the encoder to best reconstruct the original
input data (Kingma & Welling, 2013). The output of the decoder
X̂ is obtained by

X̂ = σ ′
(
W ′

+ b′
)

(5)
The training process of the AE algorithm is performed through
learning to minimize the reconstruction loss between input and
output. The commonly utilized loss function mean square error
(MSE, below) is utilized in our model.

L
(
X, X̂

)
= ∥X − X̂∥

2

= ∥X − σ ′
(
W ′ (σ (WX + b)) + b′

)
∥
2

(6)

2.5. Ensemble auto-encoder

There are many distinct types of auto-encoders, such as vari-
ational auto-encoders, spare auto-encoders, and denoising auto-
encoders, that can achieve optimal feature extraction for specific
tasks (Meng, Catchpoole, Skillicom, & Kennedy, 2017; Vincent,
Larochelle, Bengio, & Manzagol, 2008; Zhang, Cheng, Liu, He, &
Liu, 2018). We found that an ensemble AE was able to improve
feature extraction by utilizing different hidden representations
of the input signals. The features are generated by concatenat-
ing the reduced features (the latent space) from AE models of
varying architectures. Models with different numbers of layers
and nodes yield different loss values and reconstruction qualities,
so an ensemble of AE models with distinct structures can detect
multiple underlying qualities of the signal. Moreover, if there are
critical qualities shared among the different models, the assembly
can adjust the feature weighting according to importance. The
first AE model shown in Fig. 2 is composed of 3 hidden layers
with 16, 3, and 16 nodes, respectively, where the layer with 3
nodes corresponds to the latent space. The second model contains
5 hidden layers of 16, 12, 3, 12, and 16 nodes, respectively,
and the third contains 7 hidden layers of 24, 16, 12, 3, 12, 16,
and 24 nodes, respectively. The shallow model with 3 hidden
layers only reconstructs the most general features of the signal
input such as the spike peak and valley but loses more detailed
features. On the other hand, the deeper AE models reconstruct
the signal with greater preservation of detail. We then used the
concatenated features obtained from the bottleneck structure of
the model as input for the clustering algorithms. Each latent space
(compressed feature) of the three AEs can be expressed by the
following equations

hI = σI (WIX + bI)
hII = σII (WIIX + bII)
hIII = σIII (WIIIX + bIII)

(7)

where hI , hII , and hIII are the latent spaces obtained from each
AE model. Each contains a total of n samples with 3 nodes of
latent space. Our proposed feature H is obtained by concatenating
the compressed features from each model, resulting in n samples
each with 9 features.

H = [h , h , h] (8)
I II III

134
Concatenating the 3 different features from the 3 different AE
models compensates for the limitations of each model, yielding
best feature extraction performance when the latent spaces are
ensembled. And the extracted features are applied as the input
of clustering algorithms such as K-means, GMM, and DBSCAN for
spike sorting.

2.6. Feature extraction methods

2.6.1. Principal component analysis
Principal component analysis (PCA) is a technique for dimen-

sional reduction which is widely used on numerous types of
data, including spike recordings. It reduces the dimensionality
of the dataset by obtaining the principal components (PCs) of
the data and using them as the new dimensions. Each PC is
orthogonal to all other PCs and the data projected on the PCs
have maximum variance, i.e., PC2 is a vector that is orthogonal
to PC1 and has maximum variance when data is projected on it
while being orthogonal to PC1. The PCs are obtained by taking the
eigenvectors from the covariance matrix of the data.

2.6.2. Wavelet transform
Wavelet transform is often used as a feature extraction

method. After wavelet transform is applied to each spike with
specific sets of mother wavelets of different scales and times,
wavelet coefficients that separate the spike clusters best are
obtained and chosen as the new dimensions. Unlike Fourier
transform, which represents frequency components under the
assumption that the signal does not change in time, the wavelet
transform represents the time and frequency components of
signals with frequency components that change in time. The
function ω (t), called the mother wavelet, is defined by ω (t)
∈ L2 (R) and is characterized by a mean of zero and normalized
distribution. ∫

∞

−∞

ω (t) = 0

∥ω (t) ∥
2

=

∫
∞

−∞

ω (t) ω∗ (t) dt = 1
(9)

Wavelets are obtained from the mother wavelet through prop-
erty of the dilation and translation states, and defined as

ωs,τ (t) =
1

√
s
ω

(
t − τ

s

)
(10)

where s and τ are the scaling parameter and translation parame-
ter of the wavelet function, respectively. Through the equation
below, one dimensional signal f (t) can be converted to two
dimensional coefficients c(s, τ) as

c (s, τ) =

∫
∞

−∞

f (t)
1

√
s
ω∗

(
t − τ

s

)
dt,

s ∈ R+, τ ∈ R
(11)

Wavelet coefficients decomposed by the wavelet function rep-
resent local or subsections of the entire data. Therefore, wavelet
transformation can be used as a dimensionality reduction method
that extracts important features from the entire dataset.

2.6.3. Diffusion map
Like PCA, diffusion map can be used as a dimensionality

reduction technique. However, diffusion map differs in that it
takes into consideration the underlying manifold of the data
by calculating the ‘‘diffusion distance’’ between points. This is
achieved through the following steps. First, given a set of points
X = {x1, x2, . . . , xn} ∈ R, we can represent the data as a weighted
graph in the form of an adjacency matrix, where each data

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

p
a
G

I
v
v
w
2
t
t

D
L
e

w
2
i
v
n
a
e
L

2

c
s
W
f
b
t

w
o
a
n
b
p

w
a
v
d
t
S
u

w
h
t
2

2

2

d
s
t
t
i
s
t
{

f

oint is a node and the connectivities between k-nearest points
re weights assigned to each undirected edge derived using the
aussian kernel

Wij = e−
(Xi−Xj)

2

ε (12)
n this equation, ε is a data-dependent parameter. Too small of a
alue will result in entries of W close to 0, while too large of a
alue will result in entries of W close to 1, so intermediate values
here the slope of

∑
k
∑

k Wij was largest were chosen (Bah,
008). We then created a Markov matrix P that represents the
ransition probability between data points, i.e. a random walk on
he data as follows:

Pij =
Wij

ΣkWik
(13)

iffusion distance between two points is defined as the weighted
2 distance where L1 is the norm ∥P (x, .) − P (z, .) ∥, so the
quation for diffusion distance becomes

D (x, z) =

√∑
k

(P (x, k) − P (z, k))2

φ (k)
(14)

here φ (k) = 1(Pe (k)) (Nadler, Lafon, Coifman, & Kevrekidis,
006). This applied with spectral theory on random walk results
n an eigenvalue problem where the non-trivial principal eigen-
ectors weighted by the corresponding eigenvalues become the
ew coordinates of the data in which the Euclidean distances
pproximate the diffusion distances between points (the first
igenvector is omitted since it is a constant vector) (Coifman &
afon, 2006)

Pν = λν (15)
Finally, the dimensionality reduction can be expressed as

Y = {λ2ν2, λ3ν3, . . . , λd+1νd+1} (16)

.6.4. Linear discriminant analysis
Linear discrimination analysis is a method for extracting dis-

riminative and low-dimensional features by iterative subspace
election. Generating a linear discriminative projection matrix
(f×l) for dimensional reduction (l < f) from X(N×f) is important

or maximum separability of l-dimensional features. Let SB and SW
e a ‘‘between classes scatter matrix’’ and a ‘‘within classes scat-
er matrix’’, respectively. The scatter matrices could be defined as

SW =

K∑
k=1

∑
xi∈Ck

(xi − µk) (xi − µk)
T

SB =

K∑
k=1

nkµkµ
T
k

(17)

here K is the number of clusters and µk represents the center
f Ck among each data point xi belonging to the cluster Ck. To
chieve the best cluster separation, the distance between classes
eeds to be large and the scatter distance within classes needs to
e small. By selecting proper eigenvectors and eigenvalues, it is
ossible to obtain maximum separability.

max
W T SBW
W T SWW

(18)

2.6.5. Self-organizing map
A self-organizing map (SOM) is an artificial neural network

trained for generating a low-dimensional representation from
the original data while preserving topological characteristics.
SOM trains datasets through competitive learning unlike error-
correction learning algorithms such as backpropagation, then
high-dimensional data are consecutively mapped into SOM nodes
135
(10 × 10 in this case). The best matching unit (BMU) node for
each observation is selected by the equation

∥x − sc∥ = argmini∥x − si∥ (19)

here x is the input vector, sc is the weight vector closest to x,
nd si is the weight vector of the SOM nodes. And both weight
ectors for the BMU and the neighborhood nodes are updated
uring the training based on the Euclidean distance between
he weight vectors and the input vectors. The update moves the
OM nodes to denser regions of the data. The weight vectors are
pdated by the equation

si (t + 1) = si (t) + hci (t) µ (t) [x − si (t)] (20)

here hci is the update weighting for the BMU and the neighbor-
ood nodes, µ is the learning rate, and t is the time. By updating
he weight vectors, high-dimensional dataset can be mapped into
or 3 dimensions, making it easier to cluster the dataset.

.7. Clustering methods

.7.1. K-means
K-means clustering is widely used ML algorithm for dividing

ata sets into k groups (Kojima, 1969). It is an iterative algorithm
tarted by selecting the number of k for the randomly posi-
ioned centers and minimizing the clustering error by changing
he center position. The most widely used version for clustering
s the Hartigan–Wong algorithm (1979), which is based on the
um of the squared Euclidean distances between each observa-
ion xi and the corresponding centroid mk. Given dataset X =

x1, x2, . . . , xn} , Xn ∈ Rd, the total distance of each data point
rom the cluster center E (Ck) is given by

k∑
k=1

E (Ck) =

k∑
k=1

∑
xi∈Ck

∥xi − mk∥
2 (21)

As the K-means algorithm can be sensitive to the initial po-
sition of the cluster center, it should be iterated multiple times
with different initial positions. If the total distance is minimized
properly, it shows good compactness of clustering.

2.7.2. Gaussian Mixture model
The Gaussian mixture model clustering method is a probabilis-

tic approach using weights, means, and covariance of Gaussians.
The multinomial Gaussian distribution with K components for the
number of observations (n) is defined as

p (xi) =

K∑
k=1

πkN (xi|µk, Σk) (22)

where πk is the probability of the observed data which belongs
to the cluster k, µ is the average value of each cluster, and Σ is
the covariance of each cluster. The log likelihood function of the
GMM algorithm for finding the optimal parameters (π, µ, Σ) that
maximize the probability is defined by

p (xi|π, µ, Σ) =

n∑
i

ln
K∑
k

πkN (xi|µk, Σk) (23)

The expectation–maximization (EM) algorithm is used to ob-
tain the optimal values for π, µ, Σ . The EM method is performed
in 4 steps.
Initial step: Randomly initialize π, µ, Σ

E-step: calculate responsibility

γ (zik) =
πkN (xi|µk, Σk)() (24)
ΣjπjN xi|µj, Σj

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

r
m
n

M

o

2

a
d
m
p
t
w
t
n

a
p
t
ε
c

2

o
1
b
a
s

Fig. 3. Performance of the model in determining the number of source neurons for simulated Dataset1 compared to other feature extraction methods. (a) Performance
atings of different clustering algorithms for correctly determining the number of source neurons in simulated Dataset1 based on extracted features using the proposed
odel. (b) Performance ratings of spike sorting methods using different feature extraction and clustering algorithms for correctly determining the number of source
eurons in Dataset1.
-step: parameter estimation with responsibility.

µnew
k =

1
Nk

n∑
i

γ (zik) xi

Σnew
k =

1
Nk

n∑
i

γ (zik) (xi − µk) (xi − µk)
T

πnew
k =

Nk

N

(25)

Evaluation-step: repeat E-step and M-step until responsibility
r parameters converge.

.7.3. DBSCAN
The main purpose of DBSCAN is to partition dense regions

nd measure the optimal number of clusters within a given
ataset. The radius ε of the neighborhood around a point and the
inimum number of points n within radius ε are the two main
arameters required to arrange points into 3 different categories:
he core points, the border points, and the outlier points. Points
ith neighboring points within their radius ε equal to or more
han n are defined as core points. The minimum number of points
must satisfy the condition n ≥ number of data dimensions + 1.

Points that have at least one core point within their radius ε and
re not core points are defined as border points. Finally, outlier
oints are points that are neither core points nor border points. If
wo or more core points share a border point within their radius
, the core points and all their corresponding border points are
onsidered in the same group.

.7.4. Silhouette statistics
Evaluation of each clustering by silhouette scores is based

n comparison of compactness with separability (Rousseeuw,
987). The silhouette score measures the quality of clustering
y estimating the average distance between clusters. Let xi be
n observation of the dataset. We can calculate the average dis-
imilarity ai by deriving the average distance of xi from all other
points within the cluster. Similarly, the average dissimilarity bi
can be calculated by deriving the lowest average distance of
xi from all points in other clusters. In other words, bi can be
described as the dissimilarity between xi and its neighboring clus-
ters. Finally, the silhouette score for xi th observation is defined
as

Si =
bi − ai (26)
max (ai, bi)
136
The range of silhouette score is −1 ≤ Si ≤ 1 according to the
equation above. A silhouette score that is close to 1 indicates good
compactness within clusters and high separation among clusters.
A silhouette score that is close to −1 on the other hand indicates
clustering with low compactness and separability, making the
classification task more challenging.

3. Result

3.1. Performance of ensemble auto-encoder

Extracted features from ensemble AE models were applied
as input to the clustering algorithms for spike sorting. The re-
sults show that the features extracted by the proposed method
are reliable, robust under different noise levels, and show good
clustering performance with high compactness and separability.
There are two different types of accuracy to consider in spike
sorting. The first is the accuracy in determining the number of
source neurons, and the second is the classification accuracy of
all spikes contained in the dataset. For automatic spike sorting, it
is critical to accurately determine the number of source neurons.
The performances of our proposed feature extraction methods
using K-means, GMM, and DBSCAN for clustering are shown in
Fig. 3a. Both K-means and GMM clustering methods require a
prior knowledge of the number of clusters, while DBSCAN does
not. Therefore, clustering performance by K-means and GMM
was rated using silhouette scores for each pre-determined cluster
number from 1 to 20, with the optimal number of clusters receiv-
ing the largest silhouette score. Alternatively, the optimal number
can be predicted using DBSCAN by iterating the algorithm. The
performances of clustering algorithms on simulated Dataset1 are
shown in Fig. 3a. Both the K-means and GMM clustering methods
were able to correctly predict the number of source neurons in
17 of 20 cases, but DBSCAN correctly determined the number of
source neurons for all 20 cases. Therefore, all subsequent clus-
tering procedures for the ensemble AE-extracted features were
performed using DBSCAN.

3.2. Comparison with other spike sorting algorithms

Fig. 3b compares the performance of other spike sorting al-
gorithms to our proposed method for estimating the number of
source neurons in simulated Dataset1. All PCA, DM, and SOM-K-
means (Pacella, Grieco, & Blaco, 2016) exhibited lower perfor-
mance, yielding the correct number in only 13, 12, and 13 of

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142
Fig. 4. Performance comparison among models on feature extraction for sim-
ulated Dataset2. (a) Performance of various feature extraction and clustering
algorithms for correctly determining the number of source neurons for Dataset2.
(b) Silhouette scores of extracted features for the different feature extraction
methods (True labels were given to all data when calculating the silhouette
scores.).

20 cases, respectively. On the other hand, our model as well as
LDA-GMM were able to accurately predict the number of source
neurons in all 20 cases. Fig. 4a compares the performances of the
feature extraction and clustering methods on simulated Dataset2.
This dataset contains 100 subsets with signals from 2, 3, 4, and
5 source neurons. We also compared the conventional feature
extraction methods with the DBSCAN clustering algorithm and
three previously published methods: SOM-K-means, wave_clus,
and LDA-GMM. Our proposed model showed superior perfor-
mance over the other spike sorting algorithms in most cases with
different numbers of source neurons. When the cluster count
was 2 and 3, our model scored 4%–31% higher than other spike
sorting algorithms except the SOM-K-means. The latter scored 2%
higher than our model when the cluster count was 2. And when
cluster count was more than 3, our model outperformed the
other algorithms by at least 16%. We then investigated the spike
classification accuracy using both Datasets1 and 2, where spike
sorting accuracy was defined as correctly classified spikes/total
number of spikes. Table 1 compares the classification accuracy of
the proposed feature extraction model clustered using DBSCAN
with the other spike sorting algorithms on simulated Dataset1.
While the other spike sorting algorithms demonstrated classifi-
cation accuracies below 90% when the noise level was above 0.3
with Easy1, the proposed model demonstrated over 99% accuracy.
In addition, our model yielded greatest performance on Difficult2,
the most challenging subsets from Dataset1, with average spike
sorting accuracy of 99.81%. Classification accuracy was also tested
on simulated Dataset2 (Table 2). The values are presented as
averaged spike sorting accuracy of 100 subsets for each number of
source neurons. Again, our feature extraction model with DBSCAN
shows better performance for predicting the number of source
neurons and higher spike sorting accuracy than compared spike
sorting algorithms.
137
3.3. Evaluation of extracted features

Fig. 5a shows the extracted features from a few selected sub-
sets of simulated Dataset2. To visually evaluate the quality of
clusters obtained by the different feature extraction methods, the
extracted features were reduced from 9 to 3 dimension using PCA.
As indicated by Fig. 5a, our proposed method better separates
each cluster visually. The extracted features were also evalu-
ated quantitatively using the silhouette statistic (Fig. 4b), where
greater clustering quality is indicated by a score closer to 1. Our
feature extraction method yielded the highest scores among other
feature extraction methods tested for all numbers of source neu-
rons except for two cases, but our classification performance was
still 97%. As the number of source neurons increased and spike
sorting task became more difficult, the decrease in silhouette
score was smallest when using our model. The average silhouette
scores on Dataset2 using our model with different source neuron
numbers was 0.0871 higher than DM-DBCSAN, which yielded
with the lowest score (0.6344), and still 0.0276 higher than SOM-
K-means, which yielded the second best score (0.6937). Fig. 5b
presents the projections of extracted features from the 4 in vivo
datasets obtained by Huh et al. Similar to simulated data, our
model accurately clustered all 4 in vivo datasets, with spike sort-
ing accuracies of 97.65%, 98.8%, 93.92%, and 95.98%, respectively,
and corresponding silhouette scores of 0.6291, 0.6333, 0.5334,
and 0.5071 (Fig. 5c). Extracellular recordings using tetrodes or
multi-electrode arrays have been widely used to study associa-
tions between neuronal activity patterns and specific responses,
and our adjusted model also demonstrated outstanding perfor-
mance on these data without extensive optimization. Indeed,
the only adjustment made to the model structure was that the
tetrode in vivo dataset were concatenated to form 124-D data as
input instead of using the 31-D single electrode action potentials
as input. Using tetrode in vivo dataset, spike sorting accuracy
increased from 96.58% to 98.27% (+1.9%) and silhouette score
increased from 0.5757 to 0.7426 (+0.1669). The results for sin-
gle and multi-channel recordings are compared in Fig. 5c. This
comparison also demonstrates performance increases when more
information is added to the deep learning model. Therefore, it is
highly likely that performance will increase further with proper
optimization.

3.4. Selecting parameters for ensemble auto-encoder

Fig. 6 shows the optimal interval value for the gradient, num-
ber of latent space nodes, and number of AEs for our ensemble
model. Our proposed model achieved the highest performance
with an interval value of 1, while performance decreased with
increasing interval values (Fig. 6a). Performance was also opti-
mal when using 3 nodes for the latent space (Fig. 6b) and the
performance decreased with increasing number of latent space
nodes, reaching a plateau at 9. Therefore, each of the ensemble
AE models were constructed with 3 latent space nodes based on
the assumption that such architecture extract best distinguish-
ing features. Finally, the number of AEs in the ensemble was
also tested, and the results revealed that 3 AEs yielded highest
accuracy for predicting the number of source neurons correctly,
with 20 correct out of 20 data subsets from simulated Dataset1
(Fig. 6c). We also demonstrated the superiority of the ensemble
AE by visualizing the extracted features and using silhouette
scores to evaluate the cluster separability (Fig. 7). Fig. 7a shows
that the ensemble AE yields the best feature extraction perfor-
mance as it most distinctively clusters Difficult2 data compared
to the 3 single-AE models with different architectures. Addition-
ally, the ensemble model demonstrated better feature extraction
performance according to the silhouette scores than the single-

AE models on Difficult1 and 2 subsets from Dataset1, scoring the

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

f
e
p
G
a
p
c
2
v
d
a
d
e
o
d
s
b
t
n
o
a
u
t
i
m

Table 1
The results of spike sorting accuracy (%) for Dataset1 of our method and other spike sorting methods.
Dataset Noise level No.spikes PCA DBSCAN DM DBSCAN SOM K-means wave_clus LDA-GMM Ours

Easy1

0.05 2729 99.87 100 100 99.96 100 100
0.1 2753 96.86 98.65 100 99.81 100 100
0.15 2693 93.48 97.06 99.95 99.81 99.81 100
0.2 2678 86.71 94.51 99.15 99.55 98.17 99.96
0.25 2586 69.94 90.56 97.63 97.52 95.66 100
0.3 2629 45.72 85.77 86.99 89.5 90.79 99.44
0.35 2702 37.55 56.43 76.76 82.12 89.3 99.63
0.4 2645 35.22 56.48 62.17 71.98 88.43 99.63

Easy2

0.05 2619 97.24 99.23 99.95 99.88 100 99.70
0.1 2694 75.98 66.33 95.9 99.62 100 100
0.15 2648 41.18 60.19 87.35 98.3 99.81 100
0.2 2715 39.46 55.46 79.5 88.72 98.6 100

Difficult1

0.05 2535 93.87 98.26 100 100 100 100
0.1 2742 71.66 89.67 98.32 98.44 100 100
0.15 2631 41.65 53.85 92.87 96.95 100 100
0.2 2716 37.70 48.67 79.63 75.19 99.88 99.92

Difficult2

0.05 2616 84.28 98.01 98.61 100 100 100
0.1 2638 34.38 52.69 44.56 99.7 100 100
0.15 2660 34.40 36.61 40.97 83.16 99.92 99.36
0.2 2624 34.98 37.76 40.18 46.17 98.3 99.28

Average 62.60 73.80 84.02 91.32 97.93 99.81
Table 2
The result of spike sorting accuracy (%) for Dataset2 of our method and other spike sorting methods.
No. source neurons No. spikes PCA DBSCAN DM DBSCAN SOM K-means wave_clus LDA-GMM Ours

2 800 95.31 87.78 99.92 92.46 92.74 97.65
3 1200 89.36 92.52 85.82 93.03 86.91 94.62
4 1600 80.60 85.14 63.61 93.67 85.09 94.25
5 2000 74.42 72.04 54.77 90.21 85.49 90.49
c
d

highest on most of the subsets (Fig. 7b). Moreover, the single-
AE models showed steeper decreases in silhouette score with
increasing noise levels for Difficult2 data, characterized by high
spike similarity, compared to the ensemble model. Furthermore,
only the ensemble model yielded an averaged silhouette score
over 0.5.

3.5. Deep learning-based spike attention mapping

Deep learning demonstrates high classification performance
or a variety of tasks (Eo et al., 2018; Park et al., 2020). How-
ver, there are ‘‘black box’’ problems where the computational
rocesses of the deep learning model are opaque (Burrell, 2016;
unning, 2017; Ribeiro, Singh, & Guestrin, 2016). Many recent
rtificial intelligence (AI) studies have attempted to address this
roblem through feature identification, heat maps, and diagnostic
lassification (Bau et al., 2018; Hupkes, Veldhoen, & Zuidema,
018; Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016). The con-
entional method for attention mapping is to change the input
ata and check the difference in output. Likewise, we applied
similar idea to 1-D spike data to explain the workings of our
eep learning method. Our deep learning model performs feature
xtraction using the 3 AEs, each composed of different number
f layers. Each AE consists of an encoder section that reduces the
imensions of the data and a decoder section that uses the dimen-
ionally reduced data as input (the latent space) and attempts to
est reconstruct it to match the encoder input. For our model,
he number of nodes for the latent space is set to 3, and these 3
odes can be considered the most compressive representations
f the spikes. By altering the node values of the latent space
nd analyzing the changes induced in decoder output, we can
nderstand the computation process of the model. Fig. 8, referred
o as an attention mapping, is an example of such an analysis as
t shows the changes in decoder output in the form of a heat
ap. The details of the procedure are as follows. First, given a
138
fully trained model, a single specific case is provided as input
and 3 latent space node values are obtained. Second, one of the
3 latent space node values is replaced by the minimum node
value from the dataset within the same cluster, excluding the
other two node values. Third, the decoded output is obtained
with the adjusted node value. This process is repeated nineteen
times with the replaced node value uniformly increasing so that
the last replacing value is the maximum node value within the
same cluster. This results in twenty waveform outputs that can
be used to create a 1D attention mapping of the variance for each
sampling point of time frame. We speculate that these variance
values help reveal the spike waveform reconstruction qualities
induced by the latent space nodes. Moreover, due to the structure
of AE, where data X is compressed to the latent space h and
then reconstructed back to X, the reconstruction quality reveals
the compression quality as well under the assumption that a
perfectly trained AE yields no loss of information. This allows us
to estimate the key regions of the waveform to which the AE
model is attending, and hence the name ‘‘attention mapping’’ is
given to the variance heat mapping. This process can be applied
to each of the nine latent space nodes, and the nine attention
mappings can help explain how each node affects the model. A
few example attention mappings are shown in Fig. 8a. Here, the
geometric features of the spike considered highly informative for
spike sorting, such as the peak, valley, and steepness (Quiroga,
2012; Rey, Pedreira, & Quiroga, 2015), are heavily weighted by
the attention mapping. This demonstrates that our ensemble AE
model attends to the key features considered by most spike
classification studies. For a more quantitative analysis, we also
calculated the correlations between the sampling point of the
highest variance value in the attention mapping with the sam-
pling points of the peak and valley, where a sampling point of
the maximum variance value within ±2 of the peak or valley is
onsidered a correlation. For Dataset1, Dataset2, and the in vivo
ata, 76.39% of peak variance values were correlated with the

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

o

Fig. 5. Projections of extracted features of Dataset2 and in vivo dataset. The performance comparison of single-channel and 4-channel tetrode recordings. (a) Projection
f extracted features data from all the compared spike sorting algorithms on Dataset2. (b) Projection of extracted features data from our proposed method on in

vivo dataset. (c) The spike sorting accuracy and silhouette score results from 2 cases, a single-channel and 4-channel tetrode recordings, using the proposed method
are shown. The blue line and orange line represent results on the single-channel recordings and 4-channel tetrode recordings, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
peak and 20.23% with the valley. The probability of either one of
these values considered was 84.67%. Thus, in over 84% of cases,
our deep learning model attends to the peak or valley of the
spike. However, this does not mean that attention is restricted
to peaks and valleys. As shown in Fig. 8b, heavy attention was
also paid to the epoch prior to the spike and to the tail portions
of the spike, such as the after-hyperpolarization, which may also
139
be useful for spike analysis and sorting (Melonakos, White, &
Fernandez, 2016). Overall, the attention mapping helps reveal
the logic behind deep learning, shows that the model focuses on
spike characteristics used in previous spike signal analyses, and
automatically determines and considers the discriminative prop-
erties of the spike for clustering. However, it is also important
to note that even for a single node from an identical model, the

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

a
k
M
L
a
d
n
o
f
d
t
i
s
s
p

Fig. 6. Selecting the optimal parameters for gradient interval value, number of
nodes in the latent space, and number of auto-encoder models for predicting the
number of source neurons in the dataset. (a) Accuracy for determining the num-
ber of source neurons in the dataset using different interval values for gradient.
(b) Accuracy using different numbers of nodes in the latent space. (c) Accuracy
using different numbers of auto-encoder models (Ensembles).

attention mapping may change depending on the dataset or the
cluster to which it belongs. The performance of our proposed
deep learning-based method was also compared to a number
of ML algorithms, mainly on single-channel data. The attention
mapping of the ensemble AE for 4-channel tetrode recordings
resembles that of the single-channel recordings (Fig. 8b) and also
demonstrates strong correlations with spike peak and valley. Our
explainable AI is one of many possible approaches available.

4. Conclusions and future work

Our AE-based spike sorting algorithm allows for accurate
utomatic classification of neuronal spikes without advanced
nowledge of optimal distinguishing features. Compared to other
L-driven methods, such as diffusion map, SOM, wave_clus, and
DA, our model requires almost no parameter tuning and still
chieves superior classification performance on datasets with
ifferent degrees of spike shape similarities, noise levels, and
umbers of source neurons. Moreover, the most critical aspect
f our AE model, feature extraction using latent space in AE, is a
ully automatic procedure requiring no parameter tuning for any
ataset. This allows for wide application in other spike sorting
asks with potentially greater accuracy due superior data cluster-
ng. By visualizing the reconstructive qualities of the AE latent
pace using AE attention mappings, we were able to identify the
pecific spike regions (components) considered by the model to
roject the data into lower dimensions. Not only does this help
140
address the black box problem of deep learning, it also allows
users to inspect the credibility of the spike sorting results through
manual analysis of the attention mappings. One downside of
deep learning-based model is the need for proper training data.
However, because our model is an unsupervised model where
the training data need not be manually labeled, the cost of data
labeling does not exist. As a matter of fact, the test data is the
training data, which allows the model to be trained and optimized
for each dataset. Therefore, unlike other supervised deep learning
classification models, our model is free of performance drop from
lack of training data, and it is expected to show robustness for
all types of spike data. We assume that this data specificity
contributes to the superior spike sorting performance compared
to other ML methods. While all ML spike sorting methods depend
on specific predetermined features, our deep learning model can
discover and select new optimal features for extraction from each
dataset. However, our model does require training for each test
dataset, resulting in additional computational and time costs. Due
to the simple structure of our model, however, the estimated
time cost for training 3526 spikes was only 68.81 s. Our model
is currently designed and optimized for classifying different types
of spikes from single-channel recordings as it is assumed that less
data makes this task more challenging. However, increasing the
dimensions of the input data to utilize the tetrode in vivo dataset
resulted in a 1.9% increase in spike sorting accuracy and a 0.1669
increase in silhouette score without additional optimization. It
is assumed that with proper adjustment of the model struc-
ture and increased input data dimensions, for example adding

Fig. 7. Projections and silhouette scores of the extracted features from single
auto-encoders and ensemble auto-encoder. (a) Projections of extracted features
from each auto-encoder with Difficult2 noise level 0.15. (b) Silhouette scores of
extracted features from each auto-encoder with Difficult1 and 2.

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

e
u
N
t
d
w

a
t
m
e
a
l
s
a
n
d
a
4
t

Fig. 8. Attention mapping on spikes using auto-encoders. (a) Attention mapping of all latent space nodes in a deep learning-based ensemble auto-encoder for 3 spikes
ach from different source neurons of the single-channel recordings. Spikes are projected onto the attention mapping, with the red lines displaying the gradient data
sed as auto-encoder input and the green lines displaying the original spikes recorded using a single-channel tetrode. (b) Attention mapping of 3 latent space nodes,
ode 1 from each different auto-encoder model, in a deep learning-based ensemble auto-encoder for 3 spikes each from different source neurons of the 4-channel
etrode recordings. Spikes are projected onto the attention mapping, with the red lines displaying the gradient data used as auto-encoder input and the green lines
isplaying the original spikes recorded using a 4-channel tetrode. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
convolutional layer, the spike sorting performance can be fur-
her improved. For our future work, new model structures for
ulti-electrode array spike data will be compared to other multi-
lectrode array spike sorting algorithms. Decreased performance
s the number of source neurons increases is a common prob-
em among all spike sorting methods. Although our model still
howed highest spike sorting performance among tested models
s the number of source neurons increased, there was still a
oticeable drop in accuracy. We speculate that this performance
ecrease is caused mainly by limitations of the sorting algorithm
nd not the feature extraction process. As shown in Figs. 4a and
b, the clustering performance drop is noticeably greater than
he silhouette isolation score drops for dimensionally reduced
141
data. However, as it is difficult to specify an exact correlation
between the silhouette score and clustering performance, further
study is needed on different clustering techniques for varying
numbers of source neurons. In future work, we plan to incor-
porate deep learning into the clustering process for improved
spike sorting performance and increased robustness to number
of source neurons. Further, including deep learning will eliminate
all dependence on user parameters. We describe a deep learning-
based AE algorithm for accurate and efficient automatic spike
sorting, whose results on the tetrode recordings demonstrate its
capability on multi-channel recording as well. The analyzability of

J. Eom, I.Y. Park, S. Kim et al. Neural Networks 134 (2021) 131–142

t
i
t

D

c
t

A

Y
B
t
t 4736
2

A

l
a
m

R

A

B
B

B

N

N

N

Z

Z

his method by manual inspection may allow deeper understand-
ng of data and also broaden its applicability to other datasets and
asks as well.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research was partially supported by Graduate School of
ONSEI University Research Scholarship Grants in 2019 and the
rain Research Program through the National Research Founda-
ion of Korea (NRF) funded by the Ministry of Science, ICT & Fu-
ure Planning, South Korea (2018M3C7A1024734, 2018M3C7A102
015M3C7A1028392).

ppendix A. Supplementary data

Supplementary material related to this article can be found on-
ine at https://doi.org/10.1016/j.neunet.2020.11.009. More details
re described regarding parameters of our deep learning-based
odel and feature visualization of SOM algorithm.

eferences

damos, D. A., Kosmidis, E. K., & Theophilidis, G. (2008). Performance evaluation
of PCA-based spike sorting algorithms. Computer Methods and Programs in
Biomedicine, 91, 232–244.

ah, B. (2008). Diffusion maps: Analysis and applications.
au, D., Zhu, J. -Y., Strobelt, H., Zhou, B., Tenenbaum, J. B., Freeman, W. T., et al.

(2018). GAN dissection: Visualizing and understanding generative adversarial
networks. arXiv preprint arXiv:1811.10597.

latt, M., Wiseman, S., & Domany, E. (1996). Superparamagnetic clustering of
data. Physical Review Letters, 76, 3251.

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine
learning algorithms. Big Data & Society, 3, Article 2053951715622512.

Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational
Harmonic Analysis, 21, 5–30.

Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H. -J., & Hwang, D. (2018). KIKI-net: Cross-
domain convolutional neural networks for reconstructing undersampled
magnetic resonance images. Magnetic Resonance in Medicine, 80, 2188–2201.

Ester, M., Kriegel, H. -P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. Vol. 96, In KDD
(pp. 226–231).

Gibson, S., Judy, J. W., & Marković, D. (2011). Spike sorting: The first step in
decoding the brain: The first step in decoding the brain. IEEE Signal Processing
Magazine, 29, 124–143.

Guenther, F. H., Brumberg, J. S., Wright, E. J., Nieto-Castanon, A., Tourville, J.
A., Panko, M., et al. (2009). A wireless brain-machine interface for real-time
speech synthesis. PLoS One, 4.

Gunning, D. (2017). Explainable artificial intelligence (XAI). 2. DARPA.
Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsaki, G. (2000). Accuracy

of tetrode spike separation as determined by simultaneous intracellular and
extracellular measurements. Journal of Neurophysiology, 84, 401–414.

Huh, Y., Bhatt, R., Jung, D., Shin, H.-s., & Cho, J. (2012). Interactive responses of
a thalamic neuron to formalin induced lasting pain in behaving mice. PLoS
One, 7.

Huh, Y., & Cho, J. (2013). Discrete pattern of burst stimulation in the ventrobasal
thalamus for anti-nociception. PLoS One, 8.

Huh, Y., & Cho, J. (2016). Differential responses of thalamic reticular neurons to
nociception in freely behaving mice. Frontiers in Neuroscience, 10, 223.

Hupkes, D., Veldhoen, S., & Zuidema, W. (2018). Visualisation and’diagnostic
classifiers’ reveal how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelligence Research, 61, 907–926.

Keshtkaran, M. R., & Yang, Z. (2017). Noise-robust unsupervised spike sorting
based on discriminative subspace learning with outlier handling. Journal of
Neural Engineering, 14, Article 036003.
142
,

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Kojima, K.-i. (1969). Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability. American Journal of Human Genetics, 21,
407.

Lewicki, M. S. (1998). A review of methods for spike sorting: The detection
and classification of neural action potentials. Network: Computation in Neural
Systems, 9, R53–R78.

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering
algorithm. Pattern Recognition, 36, 451–461.

Manton, J. H., Applebaum, D., Ikeda, S., & Le Bihan, N. (2013). Introduction to the
issue on differential geometry in signal processing. IEEE Journal of Selected
Topics in Signal Processing, 7, 573–575.

Melonakos, E. D., White, J. A., & Fernandez, F. R. (2016). Gain modulation of
cholinergic neurons in the medial septum-diagonal band of Broca through
hyperpolarization. Hippocampus, 26, 1525–1541.

Meng, Q., Catchpoole, D., Skillicom, D., & Kennedy, P. J. (2017). Relational
autoencoder for feature extraction. In 2017 international joint conference on
neural networks (pp. 364–371). IEEE.

Nadler, B., Lafon, S., Coifman, R. R., & Kevrekidis, I. G. (2006). Diffusion maps,
spectral clustering and reaction coordinates of dynamical systems. Applied
and Computational Harmonic Analysis, 21, 113–127.

enadic, Z., & Burdick, J. W. (2004). Spike detection using the continuous wavelet
transform. IEEE Transactions on Biomedical Engineering, 52, 74–87.

guyen, T., Bhatti, A., Khosravi, A., Haggag, S., Creighton, D., & Nahavandi, S.
(2015). Automatic spike sorting by unsupervised clustering with diffusion
maps and silhouettes. Neural Computation, 153, 199–210.

guyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2014). Spike sorting
using locality preserving projection with gap statistics and landmark-based
spectral clustering. Journal of Neuroscience Methods, 238, 43–53.

Obeid, I., & Wolf, P. D. (2004). Evaluation of spike-detection algorithms
fora brain-machine interface application. IEEE Transactions on Biomedical
Engineering, 51, 905–911.

Pacella, M., Grieco, A., & Blaco, M. (2016). On the use of self-organizing map
for text clustering in engineering change process analysis: A case study.
Computational Intelligence and Neuroscience, 2016.

Park, I. Y., Eom, J., Jang, H., Kim, S., Park, S., Huh, Y., et al. (2020). Deep learning-
based template matching spike classification for extracellular recordings.
Applied Sciences, 10, 301.

Pedreira, C., Martinez, J., Ison, M. J., & Quiroga, R. Q. (2012). How many neurons
can we see with current spike sorting algorithms? Journal of Neuroscience
Methods, 211, 58–65.

Quiroga, R. Q. (2012). Spike sorting. Current Biology, 22, R45–R46.
Quiroga, R., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detec-

tion and sorting with wavelets and superparamagnetic clustering. Neural
Computation, 16, 1661–1687.

Rey, H. G., Pedreira, C., & Quiroga, R. Q. (2015). Past, present and future of spike
sorting techniques. Brain Research Bulletin, 119, 106–117.

Reynolds, D. A. (2009). Gaussian mixture models. In Encyclopedia of biometrics:
Vol. 741.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ‘‘ Why should i trust you?’’
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining
(pp. 1135–1144).

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20, 53–65.

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE
Transactions on Neural Networks, 11, 586–600.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. -A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on machine learning (pp. 1096–1103).

Wild, J., Prekopcsak, Z., Sieger, T., Novak, D., & Jech, R. (2012). Performance
comparison of extracellular spike sorting algorithms for single-channel
recordings. Journal of Neuroscience Methods, 203, 369–376.

Wilson, S. B., & Emerson, R. (2002). Spike detection: A review and comparison
of algorithms. Clinical Neurophysiology, 113, 1873–1881.

hang, C., Cheng, X., Liu, J., He, J., & Liu, G. (2018). Deep sparse autoencoder
for feature extraction and diagnosis of locomotive adhesion status. Journal
of Control Science and Engineering, 2018.

hou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep
features for discriminative localization. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 2921–2929).

https://doi.org/10.1016/j.neunet.2020.11.009
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb2
http://arxiv.org/abs/1811.10597
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb4
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb4
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb4
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb5
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb5
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb5
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb7
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb7
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb7
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb7
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb7
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb17
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb31
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb31
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb31
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb31
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb31
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb32
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb32
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb32
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb32
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb32
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb33
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb34
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb34
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb34
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb34
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb34
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb35
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb35
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb35
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb36
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb36
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb36
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb38
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb38
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb38
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb38
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb38
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb39
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb39
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb39
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb42
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb42
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb42
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30394-4/sb43

	Deep-learned spike representations and sorting via an ensemble of auto-encoders
	Introduction
	Methods
	Dataset
	Environment
	Data processing
	Feature extraction through auto-encoder
	Ensemble auto-encoder
	Feature extraction methods
	Principal component analysis
	Wavelet transform
	Diffusion map
	Linear discriminant analysis
	Self-organizing map

	Clustering methods
	K-means
	Gaussian Mixture model
	DBSCAN
	Silhouette statistics

	Result
	Performance of ensemble auto-encoder
	Comparison with other spike sorting algorithms
	Evaluation of extracted features
	Selecting parameters for ensemble auto-encoder
	Deep learning-based spike attention mapping

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

