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Introduction

ABSTRACT

The vein structures of the brain are important for understanding brain function and structure, especially when
functional magnetic resonance imaging (fMRI) is utilized, as fMRI is based on changes in the blood-oxygen-
level-dependent (BOLD) signal, which is directly related to veins. The aim of the present study was to develop an
effective method to produce high signal-to-noise-ratio (SNR) and high-resolution multi-contrast susceptibility-
weighted (SW) images of vein structures from 3 T magnetic resonance (MR) scanners using multi-gradient-echo
MR acquisition and a successive denoising process for both magnitude and phase data. Successive multi-echo MR
images were acquired at multiple time points using a multigradient-recalled echo sequence at 3 T, and noise in
the magnitude and phase data was effectively suppressed using model-based denoising methods. A T,* relaxation
model was used to denoise the magnitude data and a linear phase model was used to denoise the phase data. SW
venography images were obtained from the denoised MR data and compared with conventional SW venography. To
evaluate the performance of our denoising methods, we conducted numerical simulation studies and compared the
mean-squared-error (MSE), SNR, and contrast-to-noise ratio (CNR) that we obtained using our procedure with
those obtained using conventional denoising methods. In addition, images were inspected visually. Numerical
simulations showed that our proposed model-based denoising methods were the most effective at suppressing
noise. In vivo experiments also showed a substantial increase in the SNR of the phase mask obtained using the
proposed denoising process (twice that of the conventional GRE-based phase mask). The T,* relaxation model
method improved the SNR of the magnitude image (1.17-1.35 times that of the GRE-based magnitude image).
Noise suppression of both magnitude and phase data using our proposed method resulted in an overall increase
in the SNR and CNR in the final SW venography (1.1-1.5-fold and 1.96-fold higher SNR and CNR, respectively,
than that of the GRE-based SW venography). We demonstrated that high SNR and high-resolution SW venograms
can be obtained using multi-echo gradient-recalled acquisition and successive model-based denoising of both
magnitude and phase data.

© 2013 Elsevier Inc. All rights reserved.

speed of blood flow in small veins such as capillaries can be as fast as
0.5-3 mm/s (Pawlik et al., 1981). Therefore, techniques that depend on

Vein structures in the brain are important for understanding brain
function, especially when functional magnetic resonance imaging (fMRI)
is utilized, as fMRI is based on changes in the blood-oxygen-level-
dependent (BOLD) signal, which is related to veins. MR venography,
which is the imaging of vein structures using MR, has recently gained
attention in the diagnosis of vascular diseases, because MRI does not
result in exposure of the patient to ionizing radiation, unlike X-rays or
computed tomography (CT). Good venography should image as many
veins as possible, including veins with diameters of 10 to 100 pm such
as venules, precapillary sphincters, arterioles, small pial veins, and even
much smaller veins such as capillaries (Berne and Levy, 1988). The diam-
eter of a vein influences blood flow in that the speed of the blood flow is
proportional to the reciprocal of the cross-sectional area of a vein. The
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the speed of blood flow, such as time-of-flight angiography or phase
contrast angiography, have difficulty imaging small veins (Potchen et
al,, 1993). In contrast, BOLD-based venography, which utilizes the
susceptibility difference between oxygenated and deoxygenated
hemoglobin using a gradient-recalled-echo (GRE) pulse sequence,
can detect small veins without reference to the speed of blood flow
(Hoogenraad et al., 1998; Ogawa et al., 1990; Reichenbach et al.,
2000). Veins and the surrounding tissues have different susceptibilities,
thus leading to different phases in MR signals, which can be utilized to en-
hance vein contrast in venography. This technique, called susceptibility-
weighted imaging (SWI), has been extensively investigated in recent
years and has been used for efficient venography (Haacke et al., 2004,
2009; Jin et al., 2008; Kiselev and Posse, 1999; Xu and Haacke, 2006).
However, although substantial improvements in SW venography have
been made, there are several issues that still require improvement.

The first issue is resolution. As mentioned earlier, the diameter of
veins can range from a few pm to a few hundred pm. However, to
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date, the maximum reported in-plane resolution of SW venography is
0.5x0.5 mm? at 3 T (Haacke et al., 2009). Therefore, conventional SW
venographies cannot resolve small veins such as venules, precapillary
sphincters, arterioles, or capillaries. To resolve these small veins, the
image resolution has to be increased. However, this may lead to a
decrease in the SNR of venography performed using conventional
settings. Therefore, novel methods need to be developed to either
increase resolution without compromising the SNR or to restore the
reduced SNR in high-resolution SW venography through use of post-
processing methods. The conventional post-processing approach taken
to increase SNR and reduce noise in images is to use spatial filters such
as a Gaussian low-pass filter (LPF) (Wink and Roderick, 2004), a median
filter (MF) (Ying et al., 1996), or an anisotropic diffusion filter (ADF)
(Samsonov and Johnson, 2004). These filters are very effective at sup-
pressing noise, but they tend to remove detailed information such as
edges between tissues, fine structures, and small veins, or induce artificial
features such as staircasing artifacts or artificial patches due to nonlinear
processing (Samsonov and Johnson, 2004; Wink and Roderick, 2004;
Ying et al., 1996). These artifacts can be detrimental to accurate diagnoses
in the clinical setting. Therefore, an effective post-processing technique
that can increase spatial resolution in SW venography while compensat-
ing for the reduction in the SNR without introducing artifacts should be
developed.

The second issue is that the optimal echo time (TE) to produce a
high-contrast image of veins varies depending on the orientation of
the veins. It has been reported that veins parallel to the static field
have optimal contrast at TE =28 ms, while other veins may require
later echoes (Haacke et al., 2004; Hernando et al., 2012; Reichenbach
et al., 2000), suggesting that there are difficulties in imaging all types
of veins in a single venography at a fixed TE. Furthermore, the use of
later echoes to depict veins that are not parallel to the static
field results in a substantial reduction in the SNR, which degrades
the overall quality of SW venography. In this case, post-processing
techniques to effectively suppress noise that do not introduce spatial
artifacts are required.

Jang and Hwang (2012) proposed an effective post-processing meth-
od to increase the SNR without introducing spatial artifacts for successive
multi-echo MR images acquired at multiple time points. They showed
that high-quality multiple T>* contrast images can be effectively obtained
by suppressing noise from low-quality multi-echo images in the magni-
tude data (Jang and Hwang, 2012). This technique could potentially
improve the quality of SW venography, where multiple images are neces-
sary to depict various veins while retaining high resolution and a high
SNR. Therefore, in this paper, we extend this method to include phase
data for susceptibility-weighting, and propose a new method to generate
high-resolution and high-SNR multiple SW venography images using a
T,* relaxation model for noise suppression in the multi-echo magnitude
data and a linear phase model for noise suppression in the multi-echo
phase data used for susceptibility-weighting.

Methods
Data acquisition

For in vivo experiments, normal volunteers were scanned with a
conventional GRE sequence and a multi-gradient echo (MGRE) sequence
using a 3 T Siemens MRI system (Erlangen, Germany ). The GRE sequence
parameters were a repetition time (TR) of 30 ms, TE of 20 ms, flip angle
of 12°, field of view (FOV) of 215x215 mm?, acquisition matrix of
512x 512, slice thickness of 1.6 mm, and bandwidth of 80 Hz/Px. These
parameters were selected based on the conventional SWI GRE sequence
(Haacke et al., 2009). The only difference in our sequence was that
the FOV was slightly reduced to maximize in-plane resolution and
the slice thickness was changed from 1.4 mm to 1.6 mm. To further
increase in-plane resolution, 512x512 images were interpolated
into 1024x 1024 images, resulting in an effective resolution of

0.21x0.21 mm?. MGRE sequence parameters were a TR of 95 ms,
TE1 of 5.67 ms, echo spacing (ES) of 5.51 ms, flip angle of 27°, FOV
of 215x215 mm?, acquisition matrix of 512x 512 (interpolated to
1024 x1024), slice thickness of 1.6 mm, bandwidth of 444 Hz/Px,
and acquisition of 16 echoes. Generalized autocalibrating partially
parallel acquisition (GRAPPA) (Griswold et al., 2002) was applied
to multi-echo sequences to reduce the total acquisition time by
half. The total acquisition time for MGRE imaging was 15 min
30 s. For comparison with conventional GRE imaging, the 4th TE
at 22.2 ms was selected, which is comparable to a TE of 20 ms in
GRE imaging. A repetition of two was used in conventional GRE
imaging to improve the SNR and to achieve a similar acquisition
time as that required for the proposed MGRE imaging. Therefore, the
total acquisition time for GRE imaging was 17 min, which was even
longer than that of MGRE imaging. Multiple SW venographies obtained
from the in vivo data using the proposed MGRE method were compared
with conventional SW venographies to determine if our proposed
multi-echo SW venography method could effectively generate high-
resolution and high-SNR multiple venographies. This study was approved
by the Institutional Review Board of our hospital, and written informed
consent was obtained from all subjects.

Denoising of magnitude data in the temporal domain: T,* relaxation
model-based approach

Multiple images were obtained at multiple time points using the
MGRE sequence. These multi-echo images were arranged in time so
that each voxel had its own decay signal in the temporal domain. Noise
in magnitude data can be reduced effectively by using a model-based
denoising method (Jang and Hwang, 2011, 2012). In this method,
the decay signal is fitted to a T>* relaxation model on a voxel-by-voxel
basis, and noise is substantially suppressed during the fitting
process. The fitting process is performed voxel-by-voxel, independently
of neighboring voxels, and therefore there is no interference between
voxels and none of the spatial artifacts that are often observed in
conventional spatial filters (Jang and Hwang, 2012). The T,* relaxation
curves of most brain tissues such as white matter and gray matter
follow a multi-exponential decay pattern (Andrews et al., 2005;
Hwang and Du, 2009; Jang and Hwang, 2012; Lancaster et al.,
2003; Valentine et al., 2007; Wachowicz and Snyder, 2002). There-
fore, we used a multi-exponential decay model for the fitting process.
The non-negative least squares (NNLS) algorithm was used for fitting
(Lawson and Hanson, 1974; Provencher, 1982).

The T,* relaxation model-based denoising method can be applied
to general regions in multi-echo MR magnitude images. However, re-
gions with severe field inhomogeneity and susceptibility differences,
such as veins, cannot be completely resolved using the T,* relaxation
multi-exponential model (Reichenbach et al., 1997). Vein contrast
might not be adequately expressed in the final venography images
if the same T,* relaxation model is used to fit the non-exponential
rapid decay signals, due to the susceptibility difference in veins.
Therefore, another model is needed to denoise the non-exponential
decay signals from veins. Based on simple simulation studies, we
determined that a piecewise polynomial model (Fan and Gijbels,
1996) is an effective model to fit non-exponential decay signals. In
this piecewise polynomial model, the decay signals are segmented
into several pieces, and those segmented signals are fitted using
polynomial functions. We applied the piecewise polynomial model
when fitting with the NNLS model resulted in a high fitting error
over a certain threshold. Use of this fitting process in the temporal do-
main effectively suppressed the noise in the magnitude data in the
spatial domain. We applied this model-based denoising method
using the T,* relaxation model and piecewise polynomial model to
the in vivo data and achieved effective noise suppression. The fitted
(denoised) images were used to generate the final SW venographies.
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Denoising of phase data in the temporal domain: linear phase model-based
approach

Noise in the phase data in a multi-echo MR dataset can be effectively
reduced in a similar manner to noise suppression of the magnitude data.
We performed phase unwrapping in the temporal domain, and then
applied model-based denoising to the unwrapped phase data. The
phase data at long TE, when the intensity of the magnitude data de-
creased below the noise level, were not included in the fitting process.

Phase evolution in the temporal domain can be described by the
following equation (Haacke et al., 2009):

AD = —y'AB'TE (1)

where vy is the gyromagnetic ratio (2m*42.58 MHz/T), AB is the field gra-
dient due to field inhomogeneity, and TE is the echo time. When AB is
fixed, the phase varies following a first order linear model. Therefore,
the linear phase model shown in Eq. (2) was used to suppress the noise
in the phase data of the multi-echo dataset acquired in the present
study as follows:

d(TE) = $TE + g @

where ¢ is the rate of phase change with time and ¢y is the phase at TE=
0 ms. The phase data were fitted with model Eq. (2) using a least squares
(LS) algorithm (Abdi, 2003). The LS algorithm estimates the unknown pa-
rameters ¢ and ¢, so that the LS error between the phase data and the
model is minimized, as expressed in Eq. (3):
min 2
s lIAs—=yll 3)
where y is the acquired phase signal and s is the unknown coefficient of
Eq. (2), ¢ and ¢y. A is the linear operator which transforms the unknown
values s into the acquired phase signal y (y=A"s).

We applied the linear phase model-based denoising method to syn-
thetic data in simulation studies and in vivo data, and compared its
denoising performance with that of conventional filtering methods.

Generation of synthetic phase data

We used complex MR datasets emulating brain tissues to evaluate the
performance of our proposed denoising procedure. Fig. 1(a) shows the
phase image of a single slice at TE=20 ms. Brain tissues consist
of white matter, gray matter, and cerebrospinal fluid (CSF). Complex
multi-echo MR datasets for these three regions were generated using
Egs. (4a),(4b),(4c) by considering their decay characteristics. The image
matrix size was 128 x 128, TE1 was 3 ms, ES was 1 ms, and the total
number of echoes was 60. Decay characteristics were based on
multi-compartmental models (Andrews et al., 2005; Hwang and Du,
2009; Lancaster et al, 2003; Valentine et al, 2007; Wachowicz and
Snyder, 2002). Normal white matter has three different water pools
with relaxation times of 15, 35, and 60 ms (4a), which represent the
water pools of myelin, axons, and intra/extra-cellular spaces, respectively
(Hwang et al., 2010; Lancaster et al., 2003). Normal gray matter has little
myelin, thus, the first component in Eq. (4a) was removed in Eq. (4b) for
gray matter. CSF has a long relaxation time and decays slowly as in Eq.
(4c) (Hwang and Du, 2009; Lancaster et al., 2003). The phases for each
region were determined from the average phases of the real in vivo MR
data.

Sum(TE) = (1 e B3 xehi6xei) OTEIE000R), (4a)
S (TE) = (4 xe %1 6x e*%)eﬂo-%zm*“o”“). (4b)
Scse(TE) = (10 x &™) SO 0S5TE01670), (4c)

Fig. 1. Comparison of temporally denoised phase image at TE =20 ms. Conventional filters and the linear phase model-based method were applied to the synthetic dataset in the
temporal domain. True image (a), noisy image with SNR=4.5 (b), and images denoised by temporal filtering with LPF (c), MF (d), ADF (e), and the model-based method using a

linear phase model (f).
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Gaussian random noise was added to the real and imaginary parts
individually to generate noisy MR signals. The SNR of the noisy simula-
tion data was 4.5 at the first TE.

Comparison and evaluation of denoising performance

We compared the performance of our proposed linear phase
model-based denoising method with that of conventional filters applied
to the temporal domain (decay signals). The phase data in the temporal
domain was denoised using a Gaussian low-pass filter (LPF), a median
filter (MF), and an anisotropic diffusion filter (ADF). Parameters for
these filters were selected by evaluating the mean square error (MSE)
between the true phase image and the denoised images to allow the fil-
ter parameters to produce the minimum MSE. The standard deviation of
the Gaussian function and the kernel length of the LPF was 20 and 7
samples, respectively. The kernel size of MF was 3, k for ADF was 30.5,
and the number of iterations was 30 (k is the flow constant and controls
how strongly the diffusion process will be induced during ADF filtering
(Gerig et al., 1992; Samsonov and Johnson, 2004)).

Finally, the performance of the proposed SW venographies using
MGRE and successive model-based denoising methods was compared
with that of conventional SW venographies obtained using the GRE
imaging. The phase masks were multiplied four times with the magni-
tude images to produce SW venographies (Haacke et al., 2009). The
denoising performance was evaluated qualitatively by visual compari-
son and quantitatively by CNR comparison. CNR was defined as follows:

CNRyp = [Sa =S|/ 0% (5)

where S, and S;, are the mean signal intensities in area ‘a’ and area ‘b’,
respectively, and oy, is the standard deviation of the signal intensities
in area ‘b’

The numerical data had clear boundaries among different tissues so
that the regions of interest (ROIs) for the CNR calculation, namely a and
b, could be determined unambiguously. However, in vivo data have
rather smooth boundaries between different tissues, and accurate
calculation of CNR is difficult. Furthermore, the ROIs in the present
study were veins, which are thin and long, and therefore determination
of the ROIs and the background was not straightforward. To address
this, we defined a line-based contrast-to-noise ratio (LB-CNR) to evalu-
ate the CNR of the SW venographies. The equation used to calculate the
CNR is the same as Eq. (5), but the ROI and background area were
defined as the set of pixels describing curved lines, such as veins, as
shown in Fig. 2. The mean signal intensities of a vein and its background
were calculated from the pixels on the solid line and dashed line,
respectively.

Fig. 2. Description of line-based (LB) CNR for in vivo blood vessels. The ROI for the vein
was defined as the set of pixels on the curved line passing through the center of the
vein. The background was defined as the set of pixels on the curved dashed line sur-
rounding the vein. LB-CNR was calculated based on the two LB ROIs.

Results

Fig. 1 shows the true phase image (a), the noisy image (b) from the
synthetic dataset at TE=20 ms, images denoised by temporal filtering
with LPF (c), MF (d), ADF (e), and the results obtained after applying
our proposed linear phase model-based method (f) to the temporal
domain. The denoising process was performed independently in the
temporal domain in a voxel-by-voxel manner, and therefore no spatial
artifacts such as blurring, artificial patches, or staircasing artifacts were
observed. The proposed method showed the best denoising performance.
The MSEs were calculated as 0.0864, 0.0255, 0.0927, 0.0333, 0.0141 for
the original noisy image, images denoised with LPF, MF, ADF, and the
model-based method, respectively. LPF showed the second-best perfor-
mance. Because unwrapped phase data varies linearly with time, true
phase variation is mostly in the low-frequency range, and therefore
high-frequency noise can be effectively reduced by LPF.

Fig. 3 shows the CNRs of the images in Fig. 1 for further quantita-
tive comparison. The ‘reference’ is the original noisy image, ‘CSF &
WM’ indicate the CNR when the CSF was the ROl and WM was the
background, and ‘WM & GM’ indicates CNR when the WM was the
ROI and GM was the background. This CNR comparison revealed
that the proposed linear phase model-based denoising method
performed the best of all the methods evaluated, consistent with
the visual inspection and MSE results.

The noise reduction in the magnitude data was also most effectively
achieved by the model-based denoising method. Fig. 4 shows the
magnitude venography without the denoising process (a) and the
venography denoised using the T,* relaxation model at TE=22.2 ms
(d). Figs. 4(b) and (e) are enlarged images of Figs. 4(a) and (d), respec-
tively. The small veins in Fig. 4(b) were not conspicuous due to the
presence of high noise throughout the image. In contrast, substantial
noise reduction was observed in tissues and blood veins, increasing
the conspicuity of the small veins (see Fig. 4(e)). Figs. 4(c) and (f) show
the venography profiles along the solid lines in Figs. 4(b) and (e), respec-
tively. Noisy signal fluctuation was substantially reduced at the tissue
region, and vein signals were enhanced. The denoising method based
on the T,* relaxation model and the piecewise polynomial model effec-
tively reduced noise in the multiple-echo magnitude data.

Fig. 5 shows the phase mask of the in vivo data at TE=20 ms
obtained using GRE imaging (a), MGRE imaging without denoising at
TE=22.2 ms (b), and MGRE imaging with denoising using our proposed
linear phase model (c). Figs. 5 (d-f) are magnified inset images of (a-c),
respectively. The ideal phase mask for SW venography should have a
value of 1 for the non-vein area. The phase mask used for conventional
GRE imaging (a) shows good vein structures, but the magnified inset
image (d) shows the presence of substantial noise in the non-vein area.
This noise was amplified when multiplied with the magnitude image
(susceptibility-weighting). The original phase mask from MGRE imaging
(b and e) had severe noise in the non-vein area that was worse than the
noise in the conventional phase mask (a and d). However, the linear
phase model-based denoising method reduced the noise substantially,
resulting in an improved phase mask (c and f). Vein structures became
more conspicuous than in the conventional GRE-based phase mask
because noise in the neighborhood of veins was suppressed. The
average SNRs were calculated over the tissue regions in the phase
mask for quantitative comparison. SNRs were 42.38, 2.67, 95.49 for
the GRE-based phase mask, the MGRE-based phase mask prior to
denoising, and the denoised phase mask, respectively. Our proposed
denoising process increased the SNR substantially (twice that of the
conventional GRE-based phase mask).

Fig. 6(a) shows the SW venography at a TE of 20 ms obtained from
our 3 Tscanner using the same GRE sequence as described in the review
paper by Haacke et al. (2004) (The SW venography of a similar slice to
that used in our study is shown in Fig. 8(b) of the review paper.)
Fig. 6(b) shows the SW venography at a TE of 22.2 ms obtained from
MGRE imaging without denoising. Fig. 6(c) shows the denoised SW
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Fig. 3. CNRs of the temporally denoised images shown in Fig. 1. Two CNRs were calculated between CSF & WM, and between WM & GM. The linear phase model-based method

resulted in the highest CNRs for all cases.

venography using the proposed method. Data for the GRE and MGRE
imaging were acquired so that a similar volume was included. Magni-
fied inset images of the areas surrounded by dotted boxes in
Figs. 6(a—c) are shown in Figs. 6(d-f), respectively. The original MGRE
SW venography (e) contained a high level of noise, which decreased
the conspicuity of small and low-contrast veins. However, the denoised
MGRE SW venography (f) showed a substantial reduction in noise and
improved vein conspicuity. The contours of the veins were well re-
solved and the connectivity of the veins was clear. Vein detectability
was better in the SW venography denoised using our proposed method
than conventional GRE imaging. The veins indicated by white arrows
are examples of veins that were difficult to observe in the conventional

GRE SW venography (d) but were clearly visible in images obtained
using our proposed method (f).

For quantitative comparison, the SNR in several ROIs was calculated
for the SW venographies obtained using conventional GRE imaging,
MGRE without denoising, and MGRE with denoising. The ROIs included
the forceps minor, caudate nucleus, internal capsule, thalamus, optic
radiation, and forceps major (Woolsey et al., 2008). In all ROIs, the
average SNR increased due to the denoising process (2.27-fold that
of the SNR of the original MGRE venography before denoising and
1.1-1.5-fold that of the SNR of the conventional GRE venography
(Fig. 7)). For further comparison, CNRs were calculated as LB-CNR in
nine veins: the septal vein (SV), transverse caudate vein (TCV), internal

Fig. 4. Comparison of the magnitude venography of the in vivo data acquired by MGRE imaging at TE =22.2 ms prior to denoising (a) and after denoising using the T,* relaxation
model and piecewise polynomial model (d). (b) and (e) are magnified inset images of (a) and (d), respectively. (c) and (f) are the line profiles of the white solid line in (b) and

(e), respectively.
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Fig. 5. Comparison of the phase mask of the in vivo data acquired by conventional GRE imaging at TE=20 ms (a), the original phase mask obtained by MGRE imaging at
TE=22.2 ms (b), and the phase mask denoised using a linear phase model (c). (d-f) are magnified inset images of (a-c), respectively.

Fig. 6. Comparison of SW venographies. SW venography obtained from conventional GRE imaging at TE =20 ms (a), noisy SW venography from MGRE imaging at TE =22.2 ms (b), and
denoised SW venography of (b) with two model-based methods (c). (d-f) the magnified images of (a-c), respectively.
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Fig. 7. SNR of (a), (b), (c) of Fig. 6 for six different ROIs. In all cases, the proposed method resulted in the highest SNR.

cerebral vein (ICV), striatal vein (STV), terminal vein (TV), lateral atrial
vein (LAV), basal vein (BV), interior capillary, and posterior capillary
(Dudink et al., 2008; Rodallec et al.,, 2006). CNRs were compared among
the conventional GRE (Fig. 6a), the original MGRE (Fig. 6b), and the
denoised MGRE venographies (Fig. 6¢), as shown in Fig. 8. The denoised
MGRE venography increased the overall CNR (1.96-fold that of the con-
ventional GRE venography).

Fig. 9 shows three examples of different SW venographies obtained
using the proposed method at three different TEs of 11.18 ms
(a), 27.71 ms (b), and 44.24 ms (c). Magnified views of the boxed
areas are shown in (d)-(f), respectively. In contrast to the conven-
tional GRE-based single SW venography, the proposed method pro-
vided multiple-contrast venographies with higher SNR and CNR
values than those of conventional single SW venography.

Discussion
We demonstrated that model-based denoising with MGRE data

acquisition can produce high-resolution and high-SNR multiple-contrast
SW venographies. We used a T,* relaxation model to denoise the

magnitude data in the temporal domain, and a linear phase model to
reduce noise in the phase data. Because the denoising process was
performed on a voxel-by-voxel basis in the temporal domain, the
denoising process did not introduce any spatial artifacts, such as blurring
or artificial features. Simulation studies showed that the linear phase
model-based approach outperformed conventional filters, with mini-
mum MSE and maximum CNR values. The same approach was applied
to the in vivo phase data, and an improved phase mask was obtained.
The SNR of the phase mask obtained using our proposed method was
twice the SNR of the conventional GRE phase mask.

Accurate calculation of CNR for in vivo data is difficult because the
boundaries of tissues are not clearly defined. If the ROIs for the CNR
calculation in Eq. (5) include heterogeneous regions, then oy, in Eq. (5)
may include variations of signal components, rather than only noise
components. Therefore, we selected regions that were as homogeneous
as possible for CNR calculation.

MGRE-based SW venographies have additional advantages over con-
ventional GRE imaging with respect to the “temporal footprint” (Haider
et al,, 2008) and multiple contrasts at different TEs. The concept of a
temporal footprint was introduced to evaluate the temporal fidelity of

14 T T T T T T T T
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‘ Original MGRE
1er I ocnoised MGRE

LB-CNR

sV v icv STV
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Posterior

BV Interior
capillary capillary
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Fig. 8. LB-CNR of (a), (b), (c) of Fig. 6 for nine ROIs (septal vein, SV; transverse caudate vein, TCV; internal cerebral vein, ICV; striatal vein, STV; terminal vein, TV; lateral atrial vein,
LAV; basal vein, BV). The proposed method resulted in the highest CNR for most ROIs, except STV and BV. The overall CNR of venographies obtained using our proposed method was

1.9-fold higher than that of conventional GRE-based SW venography.
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Fig. 9. Multiple contrast denoised SW venographies obtained using the two model-based method at TE=11.18 ms (a), 27.71 ms (b), and 44.24 ms (c). Magnified views of the

boxed area are shown in (d-f), respectively.

reconstructed images obtained by a time-resolved view-shared sequence
(Wilman and Riederer, 1996) during dynamic contrast-enhanced MR
angiography. A temporal footprint can also be understood as how fast
the k-space data is acquired at a specific TE. The pixel bandwidths of
GRE and MGRE sequences in the present study were 80 Hz/Px and
444 Hz/Px, respectively. Therefore, the GRE sequence required a 5.55-fold
longer readout duration than the MGRE sequence. Due to this longer
readout duration, the data acquired from the GRE sequence had a
higher SNR than the MGRE sequence (before denoising), but its tempo-
ral footprint was higher, resulting in less temporal fidelity at a specific
TE. Our proposed method used the data acquired by the MGRE se-
quence with a shorter temporal footprint. The low SNR of the data was
compensated for by performing model-based denoising of both magni-
tude and phase data, resulting in a higher SNR than that of GRE imaging.
Therefore, SW venographies obtained using our proposed method have
higher SNR, CNR, and temporal fidelity than venographies obtained using
conventional GRE imaging. The model-based denoising process had a neg-
ligible effect on the temporal footprint of the original data because the orig-
inal decay signals changed slowly, following an exponential decay pattern.
Thus, no sharp edges or boundaries were lost during the denoising process.

In conclusion, we demonstrated that high-resolution and high-SNR
multiple-contrast SW venographies can be obtained by multi-echo MR
acquisition and effective denoising methods based on a T>* relaxation
model for the magnitude data and a linear phase model for the phase
data in the temporal domain.
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