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Purpose: The aim of this study was to develop an effective postprocessing method to increase the

signal-to-noise ratio in successive multi-echo magnetic resonance (MR) images acquired at multi-

ple time points and generate high-quality multiple T2(*) contrast images from low-quality multi-

echo images.

Methods: Successive multi-echo MR images were acquired at multiple time points using a

multigradient-recalled echo sequence at 3T and rearranged so that each pixel in the images had its

own decay signal in the temporal-domain. Two different denonising approaches were implemented

in the temporal-domain: (1) In a filtering approach, conventional low-pass filter, median filter, and

anisotropic diffusion filter were applied to the decay signals to reduce random noise; (2) In a

model-based approach, a non-negative least squares algorithm was applied for fitting to MR relaxa-

tion model for decay signals. Numerical simulations and in vivo experiments were conducted. The

denoised images were compared to each other by visual inspection and analysis of mean square

error (MSE) and contrast-to-noise ratio (CNR) on several regions of interest.

Results: Our proposed method suppressed noise in each multi-echo images without introducing

spatial artifacts. This was a natural consequence of the proposed denoising process, which was per-

formed in the temporal-domain and did not use any cross-pixel operation. MSEs decreased by a fac-

tor of 5.4–7.9 and CNRs increased by a factor of 5 in simulation studies. The results were

consistent with the in vivo findings. Random noise in the images was effectively reduced and high-

quality multiple T2(*) contrast images were obtained.

Conclusions: This study demonstrated that denoising methods in the temporal-domain can effec-

tively suppress noise in the spatial domain, and increase signal-to-noise ratio (SNR) for each image

of different T2(*) weights at multiple time points, resulting in multiple high-quality T2(*) contrast

images.VC 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3671934]
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I. INTRODUCTION

Magnetic resonance imaging (MRI) has become one of the

most popular medical imaging modalities for disease diagno-

sis because it noninvasively provides high-resolution and

high-contrast images. However, its spatial and temporal reso-

lution and contrast are often degraded by a low signal-

to-noise ratio (SNR). Efforts to improve the SNR by devel-

oping better systems include high-field MRI, surface coils,

and multiple transmitting and receiving coils, and developing

postprocessing algorithms such as linear low-pass filter

(LPF),1 median filter (MF),2 and anisotropic diffusion filter

(ADF) (Ref. 3) to reduce noise in magnetic resonance (MR)

images. Acquisition methods and selection of optimal scan

parameters have also been investigated as ways to obtain

high-SNR images. A simple way of increasing the SNR is to

increase scan time, since the SNR of MR images is propor-

tional to acquisition time. However, when the scan time is

limited, the number of images to be acquired should be

reduced to increase SNR. Nonetheless, acquiring multiple

T2(*)-weighted images is common, which is helpful for diag-

nosis, since different T2(*)-weighted images provide differ-

ent contrasts between tissues. Multiple T2(*)-weighted

images are acquired for special purposes such as improved

diagnosis, quantification of water or myelin contents,4,5

high-quality venography,6,7 cervical spinal cord imaging,8

and orthopedic imaging.9 A set of multiple T2(*)-weighted

images can form successive multi-echo MR images, which

are a series of MR images acquired at different echo times.

However, many of these images tend to have a low SNR

because high sampling rates are used to reduce the total scan

time. Therefore, an efficient denoising method for successive

multi-echo MR images that produces high-quality multiple

T2(*) contrast images from low-quality images is needed.

Conventional denoising approaches are mostly based on

spatial filters such as LPF, MF, and ADF. These spatial fil-

ters can effectively reduce noise, but introduce spatial arti-

facts.1,3 For examples, LPF reduces noise but smoothes

image details such as small structures and edges. This blur-

ring artifact can be reduced by the application of nonlinear

filters. MF is a nonlinear filter and has been widely used in

many image-processing applications. It can preserve
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relatively large edges while suppressing noise. However,

small structures and fine details tend to be degraded by MF.

ADF is very effective in preserving fine details while sup-

pressing noise. It filters local areas adaptively depending on

their structural information. However, ADF introduces an ar-

tificial appearance, such as caused by staircasing artifacts,

due to its nonlinear process.2,3 For proper diagnosis, both

loss of fine structures and the introduction of an artificial

appearance should be avoided. Therefore, the available spa-

tial filters have limitations for medical imaging because they

introduce undesirable artifacts.

These artifacts exist primarily because the filtering proc-

esses are performed in the spatial domain of the images. The

intensity of a single-pixel influences the intensities of its

neighboring pixels, which introduces spatial artifacts. As

long as filtering is performed in the spatial domain, remov-

ing these artifacts is difficult.

In this paper, we propose a new denoising approach in

which the conventional filters and a model-based method are

performed in the temporal rather than the spatial domain, to

avoid spatial artifacts. Since the denoising process does not

involve the spatially adjacent pixels, the denoising result is

naturally free of spatial artifacts.

In successive multi-echo MR images, the intensity at a

specific voxel follows a slowly varying decay function of

echo time. Therefore, conventional filtering techniques can

be applied to the decay signals, or in the temporal-domain,

which reduces noise. Furthermore, these decay signals can

be modeled based on MR physics, specifically a T2(*) relax-

ation model in the temporal-domain, which can also result in

noise reduction. In contrast to the spatial domain, denoising

in the temporal-domain introduces very few of the aforemen-

tioned artifacts since it does not use spatial information. In

other words, denoising in the temporal-domain at a specific

voxel does not affect neighboring voxels in the spatial do-

main. The proposed temporal denoising approach produced

high-quality T2(*)-weighted images comparable to conven-

tionally acquired single T2(*)-weighted images, but also pro-

duced additional different T2(*) contrast images with the

same imaging time.

Simulations and in vivo experiments were conducted

using the proposed denoising method. Visual inspections of

the denoised images, the analysis of the mean square error

(MSE) and contrast-to-noise ratio (CNR) on several regions

of interest (ROI) demonstrated the effectiveness of the pro-

posed method.

II. METHODS

II.A. Data acquisition

For in vivo experiments, normal volunteers were scanned

with a multigradient echo (MGRE) sequence and conven-

tional gradient echo (GRE) sequence using a 3T Siemens

MRI system (Erlangen, Germany). GRE sequence parameters

were repetition time (TR)¼ 49 ms, echo time (TE)¼ 38.7 ms,

flip angle¼ 17�, field of view (FOV)¼ 215� 215 mm2, ma-

trix resolution¼ 512� 512, slice thickness¼ 1.6 mm, and

bandwidth¼ 80 Hz=Px. MGRE sequence parameters were

TR¼ 95 ms, TE1¼ 5.67 ms, echo spacing (ES)¼ 5.51 ms, flip

angle¼ 27�, FOV¼ 215� 215 mm2, matrix resolution¼
512� 512, slice thickness¼ 1.6 mm, bandwidth¼ 444

Hz=Px, and sixteen echoes were acquired. The seventh echo

time was 38.73 ms. Generalized autocalibrating partially par-

allel acquisitions (GRAPPA) (Ref. 10) was applied to multi-

echo sequences to reduce acquisition time by a factor of two.

GRE sequence total acquisition time was 13 min 24 s, and

MGRE sequence total acquisition time was 14 min 13 s.

in vivo data were acquired to determine if the proposed

denoising methods could effectively suppress noise in single

images and preserve small details without blurring effects.

The study was approved by the Institutional Review Board

of Yonsei University, and written informed consent was

obtained.

II.B. Simulation of synthetic data

Simulations were performed with synthetic image data to

assess the effectiveness of the proposed method. The syn-

thetic data modeled a single slice multi-echo image dataset

that contained uniform normal white matter (WM) as a back-

ground and nine focal lesions as shown in Fig. 1(a). Diame-

ters for lesions 1–9 were 1, 3, 5, 7, 9, 11, and 17 pixels,

respectively.

Image matrix size was 128� 128, and the number of ech-

oes was 100, with first echo time (TE1)¼ 3 ms and ES¼ 1

ms. Intensities at different echo times were generated for

normal WM [Eq. (1a)] and lesions [Eq. (1b)] according to

the following decay functions:

SWMðTEÞ ¼1000� e�TE=10 þ 5000� e�TE=80

þ 4000� e�TE=100; (1a)

SlesionðTEÞ ¼ 5500� e�TE=80 þ 4500� e�TE=100: (1b)

FIG. 1. Comparison of temporally denoised images at TE¼ 22 ms. Conven-

tional filters and the model-based method were applied to the simulated

dataset in the temporal-domain. True image (a), noisy image with SNR¼ 80

dB (b), and denoised images by temporal filtering with LPF (c), MF (d),

ADF (e), and the model-based method (f). All methods resulted in substan-

tial noise reduction with high contrast. Small inset images in (c)–(e) are spa-

tially denoised images with LPF, MF, and ADF, respectively, to show

spatial artifacts observed in spatial denoising scheme.
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Decay characteristics were based on multicompartmental

models.11–15 Normal WM had a T2 spectrum with three main

peaks at 10, 80, and 100 ms, with the short T2 component

representing water in myelin, the middle T2 component rep-

resenting water in axons, and the long T2 component repre-

senting intracellular and extracellular water. Lesions

contained only two exponential components. Myelin was

assumed to be damaged.16,17 Gaussian random noise was

added to decay signals. The SNR of the noisy simulation

data was about 80 dB at the first echo time. The longer echo

time, the lower SNR because of signal intensity attenuation.

II.C. Denoising in the temporal-domain: Model-based
approach

A model for decay signals was used to reduce noise in the

temporal-domain. Since the decay rate of the MR temporal

signal at each location is governed by MR physics known as

T2(*) relaxation, the decay signal can be modeled with an

exponential function.12,13,16 If a single voxel contains differ-

ent tissues, then the decay signal can be modeled with a

multi-exponential function.14,15 Therefore, the decay signal

was fit into a specific multi-exponential function by a mini-

mization process, such as a least squares algorithm. Noise

was reduced during this fitting process, and this reduction

translated into reduction of noise in the spatial domain. The

primary curve fit algorithm used in this paper was a non-

negative least squares algorithm (NNLS).18,19 The NNLS

algorithm assumes that the decay signal consists of several

exponential decay components and estimates each decay

component by minimizing the error between modeled multi-

exponential signal and the measured decay signal, using Eq.

(2) with a nonnegativity constraint.

min
s A � s� yk k22; where s � 0; (2)

where y is the acquired decay signal and s is the T2(*) spec-

trum. A is the system matrix which transforms the T2(*) spec-

trum, s, into the acquired decay signal, y (Aij ¼ e�TE i=T2jð*Þ
and y ¼ A � s).

II.D. Comparison of the model-based approach and
the filtering approach in the temporal-domain

The proposed denoising method was compared to con-

ventional filters in the temporal-domain. Multi-echo images

in experiments and simulations were filtered in the temporal-

domain using the three conventional filters: LPF, MF, and

ADF. In the simulation, the standard deviation of the

TABLE I. MSE of the temporally denoised images at three different echo

times.

TE(ms) Reference LPF MF ADF Modeling

27 0.1235 0.0270 0.0721 0.0431 0.0228

52 0.1242 0.0268 0.0611 0.0428 0.0178

77 0.1241 0.0266 0.0559 0.0426 0.0158

FIG. 2. CNR of the temporally denoised images at nine lesions. The model-based method showed the highest CNRs for all lesions.

FIG. 3. Comparison of spatiotemporally denoised images at TE¼ 22 ms.

True image (a), noisy image (b), and temporally denoised images with

model-based method (c), and spatially filtered results of (c) with LPF (d),

MF (e), and ADF (f).
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Gaussian function for LPF was 6.06 and the kernel length

was 35. For MF, the kernel length was 11. For ADF, the pa-

rameter j was set to five times the standard deviation of the

noise, and 30 iterations were used for sufficient denoising

effect. All parameters were selected to produce the best fil-

tering results. Temporally filtered images were compared to

the denoised images using the model-based method.

Visual comparisons were made on images at specific

echo time¼ 22 ms. For quantitative comparisons, MSE and

CNR were calculated and compared for focal lesions in the

simulations. CNR was defined as follows:

CNR ¼ jSlesion � SWMj=rWM; (3)

where Slesion and SWM are the mean signal intensities in

lesions and surrounding normal WM, respectively. rWM is

the standard deviation of the signal intensities in the sur-

rounding normal WM.

III. RESULTS

Figure 1 shows the true image (a), and the noisy image

(b) from the synthetic dataset with SNR¼ 80 dB at TE¼ 22

ms, and denoised images by temporal filtering with LPF (c),

MF (d), ADF (e), and the model-based method (f) on the

temporal-domain. In addition, images denoised by each filter

in the spatial domain but not the temporal-domain are shown

in a box (c–e) to show spatial artifacts caused by conven-

tional “spatial” filters; an image at a specific echo time of 22

ms was spatially filtered. Spatial LPF reduced noise, but

caused a blurring effect and smoothed lesion edges. The

single-pixel lesion was not identifiable. MF also performed

poorly. The boundaries of the lesions were smoothed, and

the single-pixel lesion was not identifiable. Furthermore, the

background appeared to contain several patches of objects

where it should have been homogeneous. ADF appeared to

be better, but failed to preserve accurate lesion boundaries.

All spatial artifacts were caused by a high noise level in a

single MR image at a single echo time and by nonlinear

properties of the spatial filters. In contrast to the spatial filter-

ing approach, denoising methods performed in the temporal-

domain effectively reduced noise without causing noticeable

artifacts. This result was a natural consequence of the inde-

pendent, pixel-by-pixel denoising process, and the use of

multiple image sets in the denoising procedure. By visual

comparison of the denoised results in the temporal-domain,

the denoised image by the model-based approach gave the

best performance of all methods.

For quantitative comparison, MSEs were calculated for

the original noisy image and the denoised images by conven-

tional filter and the model-based method in the temporal-

domain (Table I). In all cases, the model-based method

resulted in the lowest MSEs. CNRs were measured for nine

lesions and are compared in Fig. 2. The model-based method

also resulted in the highest CNRs. The second highest CNRs

were obtained when Gaussian LPF was applied to temporal

decay signals. MF and ADF resulted in lower CNRs than

LPF. We also investigated the synergistic effect of combin-

ing both temporal and spatial filtering. After performing the

model-based denoising on the temporal-domain, conven-

tional spatial filters were applied to the temporally denoised

image for additional noise reduction.

Figure 3 compares the images at TE¼ 22 ms that were

denoised in the spatiotemporal-domain: (a) the true image,

(b) the noisy image, and (c) the temporally denoised image

TABLE II. MSE of the spatiotemporally denoised images at three different

echo times.

TE

(ms) Reference Modeling

Modelingþ

LPF

Modelingþ

MF

Modelingþ

ADF

27 0.1235 0.0228 0.0190 0.0176 0.0073

52 0.1242 0.0178 0.0136 0.0120 0.0056

77 0.1241 0.0158 0.0108 0.0082 0.0052

FIG. 4. CNR of spatiotemporally denoised images at nine lesions. The spatially denoised image with ADF showed the highest CNRs for all lesions.
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with the model-based method, and the spatially filtered

results of (c) with (d) LPF, (e) MF, and (f) ADF. Spatial LPF

sufficiently removed the residual noise, but smoothed out

lesion boundaries. MF preserved lesion sharp edges better

than LPF, but its nonlinear process distorted some bounda-

ries, and the single-pixel lesion was smoothed and not identi-

fiable. ADF effectively suppressed noise without noticeable

distortion, giving an almost true image. MSEs were calcu-

lated for the denoised images in the spatiotemporal-domain

(Table II). In all cases, ADF resulted in the lowest MSEs.

Figure 4 compares CNRs for all lesions for each filtered

image. ADF showed the highest CNRs for all lesions. MF

showed the second highest CNRs except for the small lesion

1, for which the CNR was lower than other methods because

the nonlinear process of MF smoothed out the single-pixel

lesion.

Figure 5 shows the in vivo image acquired at 38.7 ms by

conventional GRE sequence (a), at 38.73 ms by MGRE

sequence (b); and a temporally denoised image of (b) by the

model-based method (c). The spatial noise in the MGRE was

substantially reduced with no spatial artifacts. The contrast

between white and gray matter was better in the model-

based method and the noise level was lower than the GRE

sequence. This indicated the effectiveness of our proposed

approach. In addition to improved SNR, the proposed

approach resulted in multiple high-quality T2(*) contrast

images [Figs. 5(d)–5(f)]. In contrast, the conventional acqui-

sition method normally produces a single T2(*) contrast

image [Fig. 5(a)]. Figures 5(d)–5(f) shows denoised images

at TE¼ 11.18, 33.22, and 60.77 ms. Each shows that contrast

between tissues with high SNR had a comparable or better

SNR than with conventional GRE.

Figures 6(a)–6(c) shows magnified view of images in

Figs. 5(a)–5(c). The denoising effect is clearly seen for the

proposed method. Figures 6(d)–6(f) are the denoised images

with additional spatial filtering applied with LPF, MF, and

ADF. Further noise reduction was observed, but at the cost

of introducing spatial artifacts.

IV. CONCLUSIONS

This study demonstrated that denoising in the temporal-

domain of multi-echo MR images using conventional filters

or a model-based method substantially reduced spatial

noise without introducing blurring or artificial appearances.

Our proposed method produced multiple high-SNR T2(*)

contrast images. Simulations and in vivo experiments

showed the effectiveness of our proposed temporal denoising

approach. The model-based method was more effective at

reducing noise than conventional filters applied to the

temporal-domain. Spatial artifacts such as blurring or stair-

casing effects were not observed in temporally denoised

images. This was a natural consequence since the denoising

methods did not use spatial information. Simulation studies

showed that the model-based method had lower MSE and

highest CNR than conventional filters.

The main reason for SNR improvement by the proposed

temporal denoising method was the large number of images

used in the denoising process. For example, temporal LPF can

be regarded as a weighted averaging of multiple images that

result in SNR improvement. An extreme case of LPF would

be a simple averaging of all images. This extreme case would

result in a single contrast image with high SNR improvement,

but one that would have lost valuable temporal information.

This is a concern for the proposed temporal denoising

scheme. Temporal information might be lost because of tem-

poral denoising, similar to the smoothing of details or edges

with a spatial filter. This concern has been discussed before.

For example, Haider et al. introduced a “temporal footprint”

parameter to characterize time-resolved view-shared sequen-

ces for dynamic contrast-enhanced MR angiography.20 A

long temporal footprint represents a long duration over which

views used for a single image are acquired,20 leading to low

temporal fidelity. In our case, the temporal footprint might

increase because of temporal denoising, since several images

FIG. 5. Comparison of acquired in vivo images. Conventional GRE sequence

at TE¼ 38.7 ms (a), MGRE sequence at TE¼ 38.73 ms (b), denoised image

of (b) with model-based method (c), and other denoised images of MGRE

data at TE¼ 11.18 ms (d), TE¼ 33.22 ms (e), and TE¼ 60.77 ms (f).

FIG. 6. Comparison of spatiotemporally denoised in vivo images at

TE¼ 38.73 ms. Acquired image with GRE sequence at 38.7 ms (a), MGRE

sequence at 38.73 ms (b), denoised image with the model-based method (c),

and spatially filtered results of (c) with LPF (d), MF (e), and ADF (f).
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at different echo times were used to produce a final denoised

image. However, the original decay signals in multi-echo

images change very slowly, following exponential decay

pattern; therefore, no sharp edges or boundaries are lost

by LPF or the model-based method. Consequently, the

amount of temporal information lost from the increase of the

temporal footprint in multi-echo MR images would be very

small.

The model-based method uses a multi-exponential model

for decay signals since the MR signal at a specific voxel fol-

lows a multi-exponential decay, or T2(*) relaxation. Noisy

decay signals were fitted to this model using the NNLS algo-

rithm. Spatial noise was substantially reduced in this fitting

process. This method resulted in lower MSEs and higher

CNRs than other denoising methods using conventional fil-

ters in the temporal-domain, without introducing spatial arti-

facts. The visibility of small focal lesions and fine structures

was substantially improved.

One interesting result in the simulation studies was that

temporal LPF performed better than the other nonlinear fil-

ters applied to the temporal-domain. In general, when

applied to the spatial domain of images, MF and ADF per-

formed better than LPF for noise reduction and ability to pre-

serve sharp edges. However, they tended to introduce

artificial appearances such as a staircasing artifacts or flat

zones in smooth areas because of their nonlinear process. In

other words, they tended to produce artifactual discontinuity

when applied to continuous signals. Therefore, when they

were applied to the smooth decay signals of multi-echo MR

images, they also produced artifactual discontinuity over the

smoothly varying multi-exponential decay signals, which

introduced error. This nonlinear filter error resulted in larger

MSEs and lower CNRs than seen with LPF, which did not

introduce discontinuity making it superior to the multi-

exponential decay signals.

The multi-exponential model was valid for most cases in

the multi-echo MR images. However, in certain conditions,

a nonexponential decay might occur in the gradient-echo

based images from field inhomogeneity. For example, a local

field gradient (LFG) along the slice direction could induce

nonexponential signal decay in regions with moderate or

severe field inhomogeneity. Therefore, a multi-exponential

model might not be valid in these regions.21,22 In such cases,

a sinc or quadratic function that approximates the LFG-

induced decay can be incorporated into the original exponen-

tial model.23

In conclusion, this study demonstrated that denoising

approaches in the temporal-domain can effectively reduce

noise in the spatial domain without introducing spatial arti-

facts. Therefore, the method proposed here can increase the

spatial SNR in each image with different T2(*) weights in

multi-echo MR images, leading to multiple high-quality

T2(*) contrast images.
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